We can use the formula of the moment of inertia given by:

Where:
r = Distance from the point about which the torque is being measured to the point where the force is applied
F = Force
I = Moment of inertia
α = Angular acceleration
So:

Answer:
12 rad/s²
Answer:
this may help
Explanation:
maybe it will cause the eletric cause a fire that will mean it will spread till the fire men should come
Assuming that the students
worldwide are being considered, because of the extremely large population, this
can be considered as a binomial distribution. A normal distribution is used most
usually as a fair approximation of the binomial. The mean is the expectation,
therefore:<span>
E[x] = np = (16)(0.22) = 3.52
<span>μ = 3.52 </span></span>
Answer:
A. speed = 7.14 Km/s
B. distance = 1820.7 Km
Explanation:
Given that: a = 14.0 m/
, t = 8.50 minutes.
But,
t = 8.50 = 8.50 x 60
= 510 seconds
A. By applying the first equation of motion, the speed of the shuttle at the end of 8.50 minutes can be determined by;
v = u + at
where: v is the final velocity, u is the initial velocity, a is the acceleration and t is the time.
u = 0
So that,
v = 14 x 510
= 7140 m/s
The speed of the shuttle at the end of 8.50 minute is 7.14 Km/s.
B. the distance traveled can be determined by applying second equation of motion.
s = ut +
a
where: s is the distance, u is the initial velocity, a is the acceleration and t is the time.
u = 0
s =
a
=
x 14 x 
= 7 x 260100
= 1820700 m
The distance that the shuttle has traveled during the given time is 1820.7 Km.