If a man has a mass of 83 kilograms on Earth, the force of gravity on his body be on the moon 135.6N. force =mass*acc , 83 * 9.8/6= 813.4/6 = 135.6N
-- In order to achieve constant verlocity, the net force on the mass must be zero. So if there ARE any forces acting on it, they must be balanced.
-- There is already a force on the mass that can't be eliminated . . . the force of gravity.
-- That force due to gravity is (mass x gravity) = (25 kg)(9.8 m/s²) = <em><u>245N</u></em> in the <u><em>downward</em></u> direction.
-- In order to 'balance' the forces and make them add up to zero, we have to provide another force of <em>245N</em>, all in the <em>upward</em> direction.
-- Then the forces on the object will be balanced, the NET force on it will be zero, and whichever way you start it moving, it will continue to move at a cornstant verlocity.
V₁ = (1/g)₁ = Way₁ = 20(9.81)(0) = 0
V₂ (Vg)₂ = -WAy₂ = -20(9.81)(0.5) = -98.1J
The kinetic energy because the pool rotates about a fixed axis
W = VA/rA = VA/0.2 5VA
Mass momen of inertila about fixed axis which passes through point 0
I₀ = mko² = 50(0.280)² = 3.92 kg. m²
∴ The kinetic energy of the system is
T = 1/2 I₀w² + 1/2mAVA²
= 1/2(3.92)(5VA)² + 1/2 (20) VA² = 59VA²
Now that the system is at rest then T₁ = 0
Energy conservation is
T₁ +V₁ = T₂ + V₂
0+ 0 = 59VA² + (-98.1)
VA = 1.289 m/s
= 1.29 m/s
Answer:
Friction:-
The friction force is the force exerted by a surface as an object moves across it or makes an effort to move across it. There are at least two types of friction force - sliding and static friction. Though it is not always the case, the friction force often opposes the motion of an object. For example, if a book slides across the surface of a desk, then the desk exerts a friction force in the opposite direction of its motion. Friction results from the two surfaces being pressed together closely, causing inter molecular attractive forces between molecules of different surfaces. As such, friction depends upon the nature of the two surfaces and upon the degree to which they are pressed together. The maximum amount of friction force that a surface can exert upon an
EG:-
A coaster sliding against a table.
Gravity:-
The force of gravity is the force with which the earth, moon, or other massively large object attracts another object towards itself. By definition, this is the weight of the object. All objects upon earth experience a force of gravity that is directed "downward" towards the center of the earth. The force of gravity on earth is always equal to the weight of the object as found
EG:-
The force that causes a car to coast downhill even when you aren't stepping on the gas.
Elastic:-
Elasticity is the ability of a material to return to its original shape after being stretched or compressed. When an elastic material is stretched or compressed, it exerts elastic force. This force increases the more the material is stretched or compressed.
EG:-
An archer's stretched bow
Answer:
14.49 g/cm²
Explanation:
I = Io e^-(ux)
Where:
I = 573
Io = 1045
x = 0.3 inches and
rho = 11.4g/cm^3
Using the conversion constant
1 inch = 2.54 cm;
0.3 inches = 0.3 * 2.54 cm
0.3 inches = 0.762 cm
I/Io = e^-(ux), or say
Io/I = e^(ux), taking the In of both sides
ln(Io/I) = ux, making u subject of formula
u = 1/x * ln(Io/I)
u = 1/0.762 * ln(1045/573)
u = 1.312 * 0.6
u = 0.787
Next, we say that
u/rho = 0.7872/11.4 = 0.069
And finally, we make
1/(u/rho) to be our final answer
Inverse of the answer is = 14.49 g/cm²
Therefore, the um^-1 in g/cm^2? is 14.49