Answer:
I_syst = 278.41477 kg.m²
Explanation:
Mass of platform; m1 = 117 kg
Radius; r = 1.61 m
Moment of inertia here is;
I1 = m1•r²/2
I1 = 117 × 1.61²/2
I1 = 151.63785 kg.m²
Mass of person; m2 = 62.5 kg
Distance of person from centre; r = 1.05 m
Moment of inertia here is;
I2 = m2•r²
I2 = 62.5 × 1.05²
I2 = 68.90625 kg.m²
Mass of dog; m3 = 28.3 kg
Distance of Dog from centre; r = 1.43 m
I3 = 28.3 × 1.43²
I3 = 57.87067 kg.m²
Thus,moment of inertia of the system;
I_syst = I1 + I2 + I3
I_syst = 151.63785 + 68.90625 + 57.87067
I_syst = 278.41477 kg.m²
Our values can be defined like this,



The problem can be solved for part A, through the Work Theorem that says the following,

Where
KE = Kinetic energy,
Given things like that and replacing we have that the work is given by
W = Fd
and kinetic energy by

So,

Clearing F,

Replacing the values


B) The work done by the wall is zero since there was no displacement of the wall, that is d = 0.
The energy bar eaten by Sheila has chemical energy locked up inside it. This chemical energy is converted to mechanical energy in form of potential and kinetic energy and this in turn is converted to heat energy as the run progresses. Thus, the energy changes are: chemical energy to mechanical energy [kinetic and potential] and finally to heat energy.
They don't lose OR gain electrons as they've already achieved the octet rule and have 8 valence electronsn
When is at the end of the runway the velocity of the plane is given by the equation

where s=1800 m is the runway length. Thus
At half runway the velocity of the plane is

Therefore at midpoint of runway the percentage of takeoff velocity is
‰