Answer:
ω=v/r.
Explanation:
<em><u>angular velocity= linear velocity/radius</u></em>
Complete Question:
In the same configuration of the previous problem 3, four long straight wires are perpendicular to the page, and their cross sections form a square of edge length a = 13.5 cm. Each wire carries 7.50 A, and the currents are out of the page in wires 1 and 4 and into the page in wires 2 and 3.
a) Draw a diagram in a (x,y) plane of the four wires with wire 4 perpendicular to the origin. Indicate the current's directions.
b) Draw a diagram of all magnetic fields produced at the position of wire 3 by the other three currents.
c) Draw a diagram of all magnetic forces produced at the position of wire 3 by the other three currents.
d) What are magnitude and direction of the net magnetic force per meter of wire length on wire 3?
Answer:
force, 1.318 ₓ 10⁻⁴
direction, 18.435°
Explanation:
The attached file gives a breakdown step by step solution to the questions
To get the charge along the inner cylinder, we use Gauss Law
E = d R1/2εo
For the outer cylinder the charge can be calculated using
E = d R2^2/2εoR1
where d is the charge density
Use these two equations to get the charge in between the cylinders and the capacitance between them.