Answer:
x^2(3x-2) cubic inches OR in^3
OR
3x { 3 [ 3x ( x - 2 ) + 4 ] } - 8 cubic inches OR in^3
I AM UNAWARE IF YOU ASKED THAT ONE SIDE IS (3X-2) OR ALL. I WILL ANSWER BOTH PARTS
<em>-</em>
<em>NOTE</em><em>:</em><em> </em><em>'</em><em>^</em><em>'</em><em> </em><em>MEANS</em><em> </em><em>TO</em><em> </em><em>THE</em><em> </em><em>POWER</em><em> </em><em>OF</em><em>.</em><em>.</em>
<em>-</em>
Volume = v, abc = 3 sides of cube (height, width, length)
Using the formula for volume in a cube,

We can solve this.
If one side is (3x-2)in,
- (3x-2)(x)(x) = v.... x are the other two sides
- x^2(3x-2) = v
x^2(3x-2) cubic inches OR in^3
If all sides are (3x-2)in,
Use the formula,

We can solve this.
- (3x-2)(3x-2)(3x-2) = v
- (3x-2)^3 = v.... 3x = a and -2 = b
- (3x)^3 + [(3)(3x)(2)][2-3x] - (2)^3 = v
- 27x^3 + 18x(2-3x) -8 = v
- (27x^3 + 36x - 54x^2) - 8 = v.. Terms inside brackets - take 3x as common and leave out 8
- 3x(9x^2 -18x +12) = v... Take 3 as common again in the brackets
- 3x [ 3 ([3x^2 -6x] + 4) -8 = v....Take 3x common in the terms in square brackets
- 3x [ 3 [ 3x (x-2) + 4 ]] - 8 = v
- 3x { 3 [ 3x ( x - 2 ) + 4 ] } - 8 = v
3x { 3 [ 3x ( x - 2 ) + 4 ] } - 8 cubic inches OR in^3
___
If you have any questions regarding formulas or anything, comment and I will get back to you asap.
___
Answer:
5,7,9,11
Step-by-step explanation:
When we approach limits, we are finding values that are infinitesimally approaching this x-value. Essentially, we consider the approximate location that this root or limit appears. This is essential when it comes to taking Calculus, and finding the limit or rate of change of a function.
When we are attempting limits questions, there are several tests we attempt first.
1. Evaluate the limit by substituting the value of the x-value as it approaches the value (direct evaluation of a limit)
2. Rearrangement of the function, such that we can evaluate the limit.
3. (TRIGONOMETRIC PROPERTIES)


4. Using L'Hopital's Rule for indeterminate limits, such as 0/0, -infinity/infinity, or infinity/infinity.
For example:
1)

We can do this using the first and second method.
<em>Method 1: Direct evaluation:</em>Substitute x = 0 to the function.


<em>Method 2: Rearranging the function
</em>We can see that x - 25 can be rewritten as: (√x - 5)(√x + 5)
By rewriting it in this form, the top will cancel with the bottom easily, and our limit comes out the same.



Every example works exactly the same way, and by remembering these criteria, every limit question should come out pretty naturally.
Answer:
I think it is +2. I hope this helps.!
Step-by-step explanation: