In general chemistry, isotopes are a group of substances that belong to the same element. An element is characterized in the periodic table by their atomic number, which is the number of protons in an atom. Therefore, these substances have the same atomic numbers, but differ in mass numbers. Mass number is the sum of the number of protons and neutrons in the nucleus of an atom.
To determine the atomic weight of an element, you take the average weight of all the existent isotopes of that said element. The calculation would require to multiply the exact mass of the isotope to its abundance. Then, sum them all up.
Atomic weight = 98(0.18) + 112(0.82)
Atomic weight = 109.48 amu
Before the development of electrophoresis to separate macromolecules, high-speed centrifugation was used to isolate DNA.
A laboratory procedure called electrophoresis is used to divide DNA, RNA, or protein molecules according to their size and electrical charge. The molecules are moved by an electric current through a gel or other matrix. The technology of electrophoresis is crucial for the separation and examination of nucleic acids. At the lab bench, cloned DNA fragments are frequently isolated and worked with using nucleic acid electrophoresis.
High-speed centrifugation employs centrifugal force to separate particles with various densities or masses suspended in a liquid. High-speed rotation of the solution inside the tube causes each particle's angular momentum to experience centrifugal forces inversely proportionate to its mass.
To know more about electrophoresis refer to: brainly.com/question/28709201
#SPJ4
The answer is D because there is no forces of attraction or repulsion between gas particles .
Answer: Tin (Sn)
Explanation: The electron configuration for tin (Sn) is shown in the picture. It's last electrons are:
5s^2 4d^10 5p^2
The valence electrons are in the 5th electron shell and include 2 each in the 5s and 5p orbitals.