Answer:
71.1
Explanation:
1 mol Fe = 10.4 g/55.85 g/mol = 0.186
1 mol AgNo3 = 28.4 g/169.87 g/mol = 0.178 mol AgNo3
then since Ag:Fe is 1:3, AgNo3 is the limiting reactant
So now
0.178 moles * 1/3 * 241.83 g/mol Fe(NO3)3 = 14.35 g Fe(NO3)3
Excess reactant: 0.178 moes AgNO3 * 1/3 = 0.059
0.186 - 0.059 = 0.127 moles Fe * 55.85 g/mol Fe = 7.1 g Fe excess
I think its because an egg doesnt have the right chemical make up
Answer:
a. [Na₂CrO₄] = 0.10 M
b. 0.017 moles of KBr
Explanation:
Molarity means a sort of concentration which indicates the moles of solute over 1L of solution.
We determine the moles of solute: 12.5 g / 162g/mol = 0.0771 moles
We convert the volume of solution from mL to L = 750 mL . 1L/1000mL = 0.750L
Molarity (mol/L) → 0.0771 mol / 0.750L = 0.10 M
b. In order to determine the moles of solute, with the molarity of solution and the volume we assume:
Molarity = moles of solute /volume of solution
Then, Molarity . Volume of solution (L) = moles of solute
We convert the volume of solution from mL to L = 150 mL . 1L/1000mL = 0.150L
0.112 mol/L . 0.150L = Moles of solute → 0.017 moles of KBr
Answer is: Te (tellurium).
During electron capture, iodine-123 f<span>orm the nearly-stable nuclide tellurium-123.
</span>In beta
plus decay (atomic number Z is decreased by one), a proton is converted to a neutron
and positron and an electron neutrino, so mass <span>number does not
change.
</span>Iodine-123 is a radioactive isotope of iodine used in nuclear medicine imaging.<span>
</span>
N=24/12
n=2
where n= no. of moles