Answer:
1) When 6.97 grams of sodium(s) react with excess water(l), 56.0 kJ of energy are evolved.
2) When 10.4 grams of carbon monoxide(g) react with excess water(l), 1.04 kJ of energy are absorbed.
Explanation:
1) The following thermochemical equation is for the reaction of sodium(s) with water(l) to form sodium hydroxide(aq) and hydrogen(g).
2 Na(s) + 2H₂O(l) ⇒ 2NaOH(aq) + H₂(g) ΔH = -369 kJ
The enthalpy of the reaction is negative, which means that 369 kJ of energy are evolved per 2 moles of sodium. The energy evolved for 6.97 g of Na (molar mass 22.98 g/mol) is:
2) The following thermochemical equation is for the reaction of carbon monoxide(g) with water(l) to form carbon dioxide(g) and hydrogen(g).
CO(g) + H₂O(l) ⇒ CO₂(g) + H₂(g) ΔH = 2.80 kJ
The enthalpy of the reaction is positive, which means that 2.80 kJ of energy are absorbed per mole of carbon monoxide. The energy evolved for 10.4 g of CO (molar mass 28.01 g/mol) is:
Answer:
B. Charges ( a slight positive charge on one end, and a slight negative charge on the other).
Answer:I am not sure how
Explanation: sorry free trial
Answer:
The answer to your question is: letter c (96%)
Explanation:
Indium -113 (112-9040580 amu) ₁₁₃In
Indium-115 (114.9038780 amu) ₁₁₅In
Atomic mass of Indium is 114.82 amu ₁₁₄.₈₂In
Formula
Atomic mass = m₁(%₁) +m₂(%₂) / 100
%₁ = x I established this is an equation
%₂ = 100 - x
Substituting values
114.82 = 112.8040x + 114.9039(100-x) /100 and know we expand and simplify
114.82 = 112.8040x + 11490.39 - 114.9039x /100
11482 = 112.8040x -114.9039x +11490.39
11482 - 11490.39 = 112.8040x -114.9039x
-8.39 = -2.099x
x = 3.99
Then % of Indium-115 = 100 - 3.99 = 96