The most common method astronomers use to determine the composition of stars, planets, and other objects is spectroscopy. This process utilizes instruments with a grating that spreads out the light from an object by wavelength. This spread-out light is called a spectrum. Every element has a unique fingerprint that allows researchers to determine what it is made of.
The fingerprint often appears as the absorption of light. Every atom has electrons, and these electrons like to stay in their lowest-energy levels. But when photons carrying energy hit an electron, they can push it to higher energy levels. This is absorption, and each element’s electrons absorb light at specific wavelengths related to the difference between energy levels in that atom. But the electrons want to return to their original levels, so they don’t hold onto the energy for long. When they emit the energy, they release photons with exactly the same wavelengths of light that were absorbed in the first place. An electron can release this light in any direction, so most of the light is emitted in directions away from our line of sight. Therefore, a dark line appears in the spectrum at that particular wavelength.
Because the wavelengths at which absorption lines occur are unique for each element, astronomers can measure the position of the lines to determine which elements are present in a target. The amount of light that is absorbed can also provide information about how much of each element is present.
<span>(15.0 g) / (150.0 g) x (100 g) = 10.0 g/100 g H2O </span>
1.00*10^3
You’d need to lower the exponent because rounding to 3 sig figs changes the 9’s to - 1000. Keep the 0’s.
Answer:
Lead is a chemical element with the symbol Pb (from the Latin plumbum) and atomic number 82. It is a heavy metal that is denser than most common materials. Lead is soft and malleable, and also has a relatively low melting point.
Explanation:
The relative molecular mass of acid A : 50 g/mol
<h3>Further explanation</h3>
Given
40.0 cm³(40 ml) of 0.2M sodium hydroxide
0.2g of a dibasic acid
Required
the relative molecular mass of acid A
Solution
Titration formula
M₁V₁n₁=M₂V₂n₂
n=acid/base valence(number of H⁺/OH⁻)
NaOH ⇒ n = 1
Dibasic acid = diprotic acid (such as H₂SO₄)⇒ n = 2
mol = M x V
Input the value in the formula :(1 = NaOH, 2=dibasic acid)
0.2 x 40 x 1 = M₂ x V₂ x 2
M₂ x V₂ = 4 mlmol = 4.10⁻³ mol ⇒ mol of Acid A
The relative molecular mass of acid A (M) :
