Solid to liquid
Liquid to solid
By adding or removing heat energy aka thermal energy
Answer:
U = - G m M / r
Explanation:
The gravitational potential energy is given by the expression
U = - G m₁ m₂ / r
dodne G is the gravitational cosntnate (G = 6.67 10⁻¹¹¹), m and m are the mass of the bodies involved
subtype the given values
U = - G m M / r
Answer:
The amount of energy is directly proportional to the photon's electromagnetic frequency and thus, equivalently, is inversely proportional to the wavelength. The higher the photon's frequency, the higher its energy. Equivalently, the longer the photon's wavelength, the lower its energy.
Explanation:
The expression commonly used for potential gravitational energy is just simplification. It is actually just the first term in Taylor expansion of the real expression.
In general, the potential energy of gravitational field is defined as:

Where G is universal gravitational constant, and r is the distance between the objects centers of mass. Negative sign represents the bound state.
Since we are not given the mass of the planet we have to calculate it.

This formula can be used for any planet. It gives you the gravitational acceleration on the planet's surface. We can use it to calculate the planet's mass:

Now we can calculate the potential energy of that cannonball when it reaches its maximum height.

When we plug in the numbers we get:

The potential energy has to be equal to the kinetic energy.