-2/5 = 11k - k
-2/5 = 10k
-2/5/10 = k
-2/5 * 10 = k
-2/50 = k
k = -1/25.
-1/25 - 2/5 = 11k is true.
Solution :
Given weight of Kathy = 82 kg
Her speed before striking the water,
= 5.50 m/s
Her speed after entering the water,
= 1.1 m/s
Time = 1.65 s
Using equation of impulse,

Here, F = the force ,
dT = time interval over which the force is applied for
= 1.65 s
dP = change in momentum
dP = m x dV
![$= m \times [V_f - V_o] $](https://tex.z-dn.net/?f=%24%3D%20m%20%5Ctimes%20%5BV_f%20-%20V_o%5D%20%24)
= 82 x (1.1 - 5.5)
= -360 kg
∴ the net force acting will be


= 218 N
If you are pushing the coin across the table at a constant rate, the friction of the table and the horizontal force of your hand pushing are equal, and the coin itself moves at a constant rate. If you push a coin and let it go, there is no horizontal force keeping the coin going. Friction slows the coin to a stop. In both cases, the gravitational downward pull of Earth is equally but oppositely resisted by the upward push of table on the coin.
Newton's 2nd law of motion:
Force = (mass) x (acceleration)
= (0.314 kg) x (164 m/s²)
= 51.5 newtons
(about 11.6 pounds).
Notice that the ball is only accelerating while it's in contact with the racket. The instant the ball loses contact with the racket, it stops accelerating, and sails off in a straight line at whatever speed it had when it left the strings.
~ I hope this helped, and I would appreciate Brainliest. ♡ ~ ( I request this to all the lengthy answers I give ! )