(1) You must find the point of equilibrium between the two forces,
<span>G * <span><span><span>MT</span><span>ms / </span></span><span>(R−x)^2 </span></span>= G * <span><span><span>ML</span><span>ms / </span></span><span>x^2
MT / (R-x)^2 = ML / x^2
So,
x = R * sqrt(ML * MT) - ML / (MT - ML)
R = is the distance between Earth and Moon.
</span></span></span>The result should be,
x = 3.83 * 10^7m
from the center of the Moon, and
R - x = 3.46*10^8 m
from the center of the Earth.
(2) As the distance from the center of the Earth is the number we found before,
d = R - x = 3.46*10^8m
The acceleration at this point is
g = G * MT / d^2
g = 3.33*10^-3 m/s^2
Answer:
α = - 1.883 rev/min²
Explanation:
Given
ωin = 113 rev/min
ωfin = 0 rev/min
t = 1.0 h = 60 min
α = ?
we can use the following equation
ωfin = ωin + α*t ⇒ α = (ωfin - ωin) / t
⇒ α = (0 rev/min - 113 rev/min) / (60 min)
⇒ α = - 1.883 rev/min²
Answer:
1) Addition of a catalyst
2) To change the reaction rate of slope B to look like slope A, simply add a catalyst to speed up the rate of reaction, giving you a higher amount of products in a shorter amount of time (line A)
Explanation:
1 and 2)Two things can alter the rate of a reaction, either the addition of a catylist which will not alter the composition of the products or reactants, but will accelerate the reaction time, or an increase in temperature will also increase the rate at which a reaction will occur.
You could choose temperature also and have the same result, it's your choice both are correct, but catalyst is the easiest.
Answer:
Velocity of both masses after the collisio
Explanation:
Hope it will help
<h2>
<em><u>Brainlists please</u></em></h2>
Answer:
15.4 kg.
Explanation:
From the law of conservation of momentum,
Total momentum before collision = Total momentum after collision
mu+m'u' = V(m+m').................... Equation 1
Where m = mass of the first sphere, m' = mass of the second sphere, u = initial velocity of the first sphere, u' = initial velocity of the second sphere, V = common velocity of both sphere.
Given: m = 7.7 kg, u' = 0 m/s (at rest)
Let: u = x m/s, and V = 1/3x m/s
Substitute into equation 1
7.7(x)+m'(0) = 1/3x(7.7+m')
7.7x = 1/3x(7.7+m')
7.7 = 1/3(7.7+m')
23.1 = 7.7+m'
m' = 23.1-7.7
m' = 15.4 kg.
Hence the mass of the second sphere = 15.4 kg