Answer:
C_{y} = 4.96 and θ' = 104,5º
Explanation:
To add several vectors we can decompose each one of them, perform the sum on each axis, to find the components of the resultant and then find the module and direction.
Let's start by decomposing the two vectors.
Vector A
sin θ =
/ A
cos θ = Aₓ / A
A_{y} = A sin θ
Ax = A cos θ
A_{y} = 4.9 sin 31 = 2.52
Ax = 4.9 cos 31 = 4.20
Vector B
B_{y} = B sin θ
Bx = B cos θ
B_{y} = 6 sin 156 = 2.44
Bx = 6 cos 156 = -5.48
The components of the resulting vector are
X axis
Cx = Ax + B x
Cx = 4.20 -5.48
Cx = -1.28
Axis y
C_{y} = Ay + By
C_{y} = 2.52 + 2.44
C_{y} = 4.96
Let's use the Pythagorean theorem to find modulo
C = √ (Cₙ²x2 + Cy2)
C = Ra (1.28 2 + 4.96 2)
C = 5.12
We use trigonemetry to find the angle
tan θ = C_{y} / Cₓ
θ’ = tan⁻¹ (4.96 / (1.28))
θ’ = 75.5
como el valor de Cy es positivo y Cx es negativo el angulo este en el segundo cuadrante, por lo cual el angulo medido respecto de eje x positivo es
θ’ = 180 – tes
θ‘= 180 – 75,5
θ' = 104,5º
The appropriate term is latent heat. This energy is released as the water changes state from a gas to liquid....a liquid to solid etc. the latent heat is either absorbed or given off by the water as it changes its physical state. Latent heat of fusion is associated with freezing a liquid or melting a solid.
Answer:
Longest wavelength, lowest intensity
Explanation:
To solve this problem we will apply the concepts related to pressure, depending on the product between the density of the fluid, the gravity and the depth / height at which it is located.
For mercury, density, gravity and height are defined as



For the air the defined properties would be



We have for equilibrium that


Replacing,

Rearranging to find 


Therefore the elevation of the mountain top is 9400ft