Answer:
The resultant force would (still) be zero.
Explanation:
Before the 600-N force is removed, the crate is not moving (relative to the surface.) Its velocity would be zero. Since its velocity isn't changing, its acceleration would also be zero.
In effect, the 600-N force to the left and 200-N force to the right combines and acts like a 400-N force to the left.
By Newton's Second Law, the resultant force on the crate would be zero. As a result, friction (the only other horizontal force on the crate) should balance that 400-N force. In this case, the friction should act in the opposite direction with a size of 400 N.
When the 600-N force is removed, there would only be two horizontal forces on the crate: the 200-N force to the right, and friction. The maximum friction possible must be at least 200 N such that the resultant force would still be zero. In this case, the static friction coefficient isn't known. As a result, it won't be possible to find the exact value of the maximum friction on the crate.
However, recall that before the 600-N force is removed, the friction on the crate is 400 N. The normal force on the crate (which is in the vertical direction) did not change. As a result, one can hence be assured that the maximum friction would be at least 400 N. That's sufficient for balancing the 200-N force to the right. Hence, the resultant force on the crate would still be zero, and the crate won't move.
Answer:
The magnetic field in the System is 0.095T
Explanation:
To solve the exercise it is necessary to use the concepts related to Faraday's Law, magnetic flux and ohm's law.
By Faraday's law we know that

Where,
electromotive force
N = Number of loops
B = Magnetic field
A = Area
t= Time
For Ohm's law we now that,
V = IR
Where,
I = Current
R = Resistance
V = Voltage (Same that the electromotive force at this case)
In this system we have that the resistance in series of coil and charge measuring device is given by,

And that the current can be expressed as function of charge and time, then

Equation Faraday's law and Ohm's law we have,



Re-arrange for Magnetic Field B, we have

Our values are given as,





Replacing,


Therefore the magnetic field in the System is 0.095T
Answer:
4.14°
Explanation:
given:
r = 1.2 km
v = 105 km/h
1) <em>convert your given </em>
a) r = 1.2 km to m = 1200m
b) v = 105 km/h to m/s = 29.2 m/s
2) <em>plug into your ideal banking angle equation</em>
(
) =
= 4.14°
Answer:
Length of pipe
meter
Explanation:
Speed of a transverse wave on a string

where F is the tension in string and
is the mass per unit length
Thus,

Substituting the given values we get -

Speed of a transverse wave on a string

For third harmonic wave , frequency is equal to

Substituting the given values, we get -

Length of pipe

Substituting the given values we get
for first harmonic wave

Length of pipe
meter
Answer:

Explanation:
Let's define the variables to proceed with the operations,
So,
The masses



Average distances


Gravitational constant

The formula of the Gravitational Force between the Moon and the Earth would be,



This force is in the direction of the earth.
We perform the same process but now between the Sun and the Moon, like this,



This force is in the direction of the Sun
The net force must be


This in the direction of the Sun.