Answer:
1,050 Joules
Explanation:
<u>Step 1:</u> work done in moving the box 30 meters
work done = force X distance
= 25N X 30 = 750 Joules
<u>Step 2: </u>calculate total internal energy
Total internal energy = work done + kinetic energy
= 750 Joules + 300 Joules
= 1,050 Joules = 1.05 KJ
The law of conservation of momentum<span> states that for two objects colliding in an isolated system, the total </span>momentum<span> before and after the collision is equal. Momentum should be conserved. Hope this answers the question. Have a nice day.</span>
Answer:
Option (A) is correct.
Explanation:
A horizontal rope has a length of 5 m and a mass of 0.00145 kg. If a pulse occurs on this string, generating a wavelength of 0.6 m and a frequency of 120 Hz. The tension to which the string is subjected is
mass of string, m = 0.00145 kg
Frequency, f = 120 Hz
wavelength = 0.6 m
Speed = frequency x wavelength
speed = 120 x 0.6 = 72 m/s
Let the tension is T.
Use the formula

Option (A) is correct.
Auroras are frequently seen : B. After solar flares
The Aurora is created by an ongoing influx of particles into the Earth's existing magnetic field,
This particles originated from the Sun as part of Solar wind
hope this helps
Answer:
The units of the orbital period P is <em>years </em> and the units of the semimajor axis a is <em>astronomical units</em>.
Explanation:
P² = a³ is the simplified version of Kepler's third law which governs the orbital motion of large bodies that orbit around a star. The orbit of each planet is an ellipse with the star at the focal point.
Therefore, if you square the year of each planet and divide it by the distance that it is from the star, you will get the same number for all the other planets.
Thus, the units of the orbital period P is <em>years </em> and the units of the semimajor axis a is <em>astronomical units</em>.