Answer:
0.3811 mol.
Explanation:
- To calculate the no. of moles of a gas, we can use the general law of ideal gas: <em>PV = nRT</em>.
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
∵ P = 2.1 atm, V = 4.5 L, T = 302 K, R = 0.0821 L.atm/mol.K.
<em>∴ n = PV/RT </em>= (2.1 atm)(4.5 L)/(0.0821 L.atm/mol.K)(302.0 K) = <em>0.3811 mol.</em>
I think it’s c because it only includes the parts of the sentence involving the building and the sentence still makes sense
Original molarity was 1.7 moles of NaCl
Final molarity was 0.36 moles of NaCl
Given Information:
Original (concentrated) solution: 25 g NaCl in a 250 mL solution, solve for molarity
Final (diluted) solution: More water is added to make the new total volume 1.2 liters, solve for the new molarity
1. Solve for the molarity of the original (concentrated) solution.
Molarity (M) = moles of solute (mol) / liters of solution (L)
Convert the given information to the appropriate units before plugging in and solving for molarity.
Molarity (M) = 0.43 mol NaCl solute / 0.250 L solution = 1.7 M NaCl (original solution)
2. Solve for the molarity of the final (diluted) solution.
Remember that the amount of solute remains constant in a dilution problem; it is just the total volume of the solution that changes due to the addition of solvent.
Molarity (M) = 0.43 mol NaCl solute / 1.2 L solution
Molarity (M) of the final solution = 0.36 M NaCl
I hope this helped:))
It should be D, cells are parts, tissue is part and organ is part of a system.
The given above pretty much states already that with the presence of the calcium carbonate which acts as the buffer will allow the solution to withstand changes in acidity. The greater the amount, the higher chances that it will be able to withstand the said changes. Therefore, if Lake X had greater ppm of CaCO3 then, it will be able to withstand greater amount of acid rain.