Answer:
1223.38 mmHg
Explanation:
Using ideal gas equation as:

where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 
Also,
Moles = mass (m) / Molar mass (M)
Density (d) = Mass (m) / Volume (V)
So, the ideal gas equation can be written as:

Given that:-
d = 1.80 g/L
Temperature = 32 °C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T = (32 + 273.15) K = 305.15 K
Molar mass of nitrogen gas = 28 g/mol
Applying the equation as:
P × 28 g/mol = 1.80 g/L × 62.3637 L.mmHg/K.mol × 305.15 K
⇒P = 1223.38 mmHg
<u>1223.38 mmHg must be the pressure of the nitrogen gas.</u>
Answer:
2.73
Explanation:
2.72815277835894
i used an online converter lol it is much faster. if you'd like a step by step guide comment and ill give you one :)
The answer is (4) Ag(s)
Solid Silver has a Face Centered Cubic crystal structure.
The remaining choices are gases (H2 & Ar) and liquid (Br). Liquids and gases do not form crystal structures as their atoms are loose.
Answer:
Reagent O₂ will be consumed first.
Explanation:
The balanced reaction between O₂ and C₄H₁₀ is:
2 C₄H₁₀ + 13 O₂ → 8 CO₂ + 10 H₂O
Then, by reaction stoichiometry, the following amounts of reactants and products participate in the reaction:
- C₄H₁₀: 2 moles
- O₂: 13 moles
- CO₂: 8 moles
- H₂O: 10 moles
Being:
- C: 12 g/mole
- H: 1 g/mole
- O: 16 g/mole
The molar mass of the compounds that participate in the reaction is:
- C₄H₁₀: 4*12 g/mole + 10*1 g/mole= 58 g/mole
- O₂: 2*16 g/mole= 32 g/mole
- CO₂: 12 g/mole + 2*16 g/mole= 44 g/mole
- H₂O: 2*1 g/mole + 16 g/mole= 18 g/mole
Then, by reaction stoichiometry, the following mass quantities of reactants and products participate in the reaction:
- C₄H₁₀: 2 moles* 58 g/mole= 116 g
- O₂: 13 moles* 32 g/mole= 416 g
- CO₂: 8 moles* 44 g/mole= 352 g
- H₂O: 10 moles* 18 g/mole= 180 g
If 78.1 g of O₂ react, it is possible to apply the following rule of three: if by stoichiometry 416 g of O₂ react with 116 g of C₄H₁₀, 62.4 g of C₄H₁₀ with how much mass of O₂ do they react?

mass of O₂= 223.78 grams
But 21.78 grams of O₂ are not available, 78.1 grams are available. Since you have less mass than you need to react with 62.4 g of C₄H₁₀, <u><em>reagent O₂ will be consumed first.</em></u>