This problem is providing us with the mass of hydrochloric acid and the volume of solution and asks for the pH of the resulting solution, which turns out to be 1.477.
<h3>pH calculations</h3>
In chemistry, one can calculate the pH of a solution by firstly obtaining its molarity as the division of the moles of solute by the liters of solution, so in this case for HCl we have:

Next, due to the fact that hydrochloric acid is a strong acid, we realize its concentration is nearly the same to the released hydrogen ions to the solution upon ionization. Thereby, the resulting pH is:

Which conserves as much decimals as significant figures in the molarity.
Learn more about pH calculations: brainly.com/question/1195974
<span>We can use rocks to determine if the animals from to day have changed from the past.
Rocks also help us know if rivers once flowed through an area.
We use them to find out what type of animals live then that are extinct now.</span>
The answer is c Yep Allll day
Answer:
34g
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
H2S + 2AgNO3 —> 2HNO3 + Ag2S
Next, we shall determine the number of mole of H2S required to react with 2 moles of AgNO3.
This is illustrated below:
From the balanced equation above,
We can see that 1 mole of H2S is required to react completely with 2 moles of AgNO3.
Finally, we shall convert 1 mole of H2S to grams. This is shown below:
Number of mole H2S = 1 mole
Molar mass of H2S = (2x1) + 32 = 34g/mol
Mass = number of mole x molar Mass
Mass of H2S = 1 x 34
Mass of H2S = 34g
Therefore, 34g of H2S is needed to react with 2 moles of AgNO3.
Measure how much water has gone in, so you know the concentration.