The energy that is
essential to break one C-H bond is 414 kJ/mol. Since, there are four C-H bonds
in CH4, the energy Δ HCH4 for
breaking all the bonds is calculated as Δ HCH4 = 4 x bond energy of C-H bond. By
multiplying the 4 with the 414 kJ/mol you can get the answer of 1656 kJ/mol CH4
molecules.
Here is a picture of which shows you how many valence electrons are in the Lewis structure of xeo4
Data:
Arsenic Molar Mass = 74,9216 ≈ 75 u (<span>atomic mass unit)</span>
Solving:
1 mole of arsenic → 75g ------------ 6,02*10²³ molecules
..................................X -------------- 1 molecule
6,02*10²³X = 75

Answer:
The mass of Na₂O that can be produced by the chemical reaction of 4.0 grams of sodium with excess oxygen in the reaction is 5.39 grams.
Explanation:
You know the balanced reaction:
4 NA + O₂ ⟶ 2 Na₂O
By stoichiometry of the reaction (that is, the relationship between the amount of reagents and products in a chemical reaction) react and are produced:
- Na: 4 moles
- O₂: 1 mole
- Na₂O: 2 moles
Being:
the molar mass of the compounds participating in the reaction is:
- Na: 23 g/mole
- O₂: 2*16 g/mole= 32 g/mole
- Na₂O: 2*23 g/mole +16 g/mole= 62 g/mole
Then by stoichiometry of the reaction they react and are produced:
- Na: 4 moles* 23 g/mole= 92 g
- O₂: 1 mole*32 g/mole= 32 g
- Na₂O: 2 moles* 62 g/mole= 124 g
Then you can apply the following rule of three: if 92 grams of Na produce 124 grams of Na₂O, 4 grams of Na, how much mass of Na₂O does it produce?

mass of Na₂O=5.39 g
<em><u>The mass of Na₂O that can be produced by the chemical reaction of 4.0 grams of sodium with excess oxygen in the reaction is 5.39 grams.</u></em>