Answer:
y = (3/5)x+26/5 or 5y = 3x+26
Step-by-step explanation:
Applying,
The equation of a line in two point form
(y₂-y₁)/(x₂-x₁) = (y-y₁)/(x-x₁)............... Equation 1
From the question,
Given: y₂ = 7, y₁ = 4, x₂ = 3, x₁ = -2
Substitute these values into equation 1
(7-4)/[3-(-2)] = (y-4)/(x+2)
3/5 = (y-4)/(x+2)
5(y-4) = 3(x+2)
5y-20 = 3x+6
5y = 3x+6+20
5y = 3x+26
y = (3/5)x+26/5
Hence the equation of the line is y = (3/5)x+26/5 or 5y = 3x+26
A)
Knights:
25n-C+1250=0
25n+1250=C
C=25n+1250
Legions:
30n+995-C=0
30n+995=C
C=30n+995
b)
fixed cost=b in y-intercept form
variable cost, dependent on n=m in y-intercept form
Knights:
fixed=1250
variable=25
Legions:
fixed=995
variable=30
c)
insert 45 into n for both formulas:
Knights:
25*45+1250=1125+1250=2375
Legions:
30*45+995=1350+995=2345
d)With 45 guests the Legion's Banquett Hall is cheaper, but due to the higher variable cost this changes with a few more people.
calculate break even point:
difference in variable cost=5 -> per person the cost difference will decrease by this much if another person joins
current price difference: 2375-2345=30
30/5=6 -> if there are 6 additional guest (total= 51) they will cost the same
if there are more than 6 additional guest (total >51) the knight's banquett will be cheaper.
Answer:
Simplifying
T = C(9 + AB) * forB
Reorder the terms for easier multiplication:
T = C * forB(9 + AB)
Multiply C * forB
T = forBC(9 + AB)
T = (9 * forBC + AB * forBC)
Reorder the terms:
T = (forAB2C + 9forBC)
T = (forAB2C + 9forBC)
Solving
T = forAB2C + 9forBC
Solving for variable 'T'.
Move all terms containing T to the left, all other terms to the right.
Simplifying
T = forAB2C + 9forBC
Step-by-step explanation:
Simplifying
T = C(9 + AB) * forB
Reorder the terms for easier multiplication:
T = C * forB(9 + AB)
Multiply C * forB
T = forBC(9 + AB)
T = (9 * forBC + AB * forBC)
Reorder the terms:
ANSWER
the factor <em>will </em>
<em>1</em><em>1</em><em> </em><em>is </em><em>common</em><em> </em><em>in </em><em>both </em><em>the </em><em>given </em><em>term</em>
<em>so,</em><em> </em><em>when </em><em>we </em><em>take </em><em>1</em><em>1</em><em> </em><em>from </em><em>both </em><em>term </em>
<em>it </em><em>will </em><em>left </em><em>with </em><em> </em>
<em>1</em><em>1</em><em>(</em><em> </em><em>2</em><em>+</em><em>1</em><em>)</em><em> </em>
<em>this </em><em>is </em><em>the </em><em>final </em><em>answer</em><em> </em>
<em>hope </em><em>it </em><em>helps </em><em>and </em><em>u </em><em>have </em><em>a </em><em>great</em><em> </em><em><u>day</u></em>
I mean, they both do. i am not 100% sure, but im pretty sure. Hope this helps!