Yes, when molten candle wax solidifies it is a chemical reaction
<u>Explanation:</u>
Basically Wax is crystalline so once the candle light melts it freezes taking back the solid state to the room temperature.
When the room temperature is below the freezing point, the liquid candle wax, turns into solid state again, therefore this process is called solidification. The process of freezing or solidification is a process when an object turns liquid and freezes back to solid state.
Indeed, Yes, when molten candle wax solidifies it is a chemical reaction
<u>Answer:</u> The number of molecules of ethinyl estradiol present in one pill are 
<u>Explanation:</u>
To calculate the number of moles, we use the equation:

Given mass of ethinyl estradiol = 0.038 mg =
(Conversion factor: 1 g = 1000 mg)
Molar mass of ethinyl estradiol ![(C_{20}H_{24}O_2)=[(20\times 12)+(24\times 1)+(2\times 16)]=296g/mol](https://tex.z-dn.net/?f=%28C_%7B20%7DH_%7B24%7DO_2%29%3D%5B%2820%5Ctimes%2012%29%2B%2824%5Ctimes%201%29%2B%282%5Ctimes%2016%29%5D%3D296g%2Fmol)
Putting values in above equation, we get:

According to mole concept:
1 mole of a compound contains
number of molecules
So,
of ethinyl estradiol will contain =
number of molecules
Hence, the number of molecules of ethinyl estradiol present in one pill are 
Answer is: CaCl₂(s), calcium chloride.
Calcium cations and chlorine anions have a crystal structure in this solid inorganic salt. Ions have <span>the ordered arrangement.</span><span>
Ethane (C</span>₂H₆) is gas, g is chemistry
abbreviations or physical state symbol for gas, gases do not have a crystal structure.
Methanol (CH₃OH) is liquid, l is chemistry abbreviations or physical state symbol for liquids, it do not have a crystal structure.
Calcium iodide is dissolved in water, aqueous solution
(aq) do not have a crystal structure.
Answer:
Yes, there will be liquid present and the mass is 5.19 g
Explanation:
In order to do this, we need to use the equation of an ideal gas which is:
<em>PV = nRT (1)</em>
<em>Where:</em>
<em>P: Pressure</em>
<em>V: Volume</em>
<em>n: number of moles</em>
<em>R: gas constant</em>
<em>T: Temperature</em>
we know that the pressure is 856 Torr at 300 K. So, if we want to know if there'll be any liquid present, we need to calculate the moles and mass of the CCl3F at this pressure and temperature, and then, compare it to the initial mass of 11.5 g.
From (1), solving for moles we have:
<em>n = PV/RT (2)</em>
Solving for n:
P = 856/760 = 1.13 atm
R = 0.082 L atm / mol K
n = 1.13 * 1 / 0.082 * 300
n = 0.0459 moles
Now, the mass is:
m = n * MM (3)
The molar mass of CCl3F reported is 137.37 g/mol so:
m = 0.0459 * 137.37
m = 6.31 g
Finally, this means that if we put 11.5 g of CCl3F in a container, only 6.31 g will become gaseous, so, this means it will be liquid present, and the mass is:
m = 11.5 - 6.31
m = 5.19 g
<span>Well, during the day, the water, as well as the surfaces surrounding the water, are heated by various thermodynamic processes: conduction, convection, radiation, etc. This in turn warms the water molecules in the lakes, streams, rivers, and oceans, thereby transferring heat (their kinetic energy) to the water molecules, which in turn receive that energy from the surrounding surfaces, or directly via radiation/insolation from the sun. When the water molecules attain enough energy, some of them attain enough energy to escape the surface of the liquid and enter the gas phase. Hence, as water is heated, more and more water molecules attain enough kinetic energy to enter the gas phase.</span>