Answer:
HF - hydrogen bonding
CBr4 - Dispersion
NF3 - Dipole-dipole
Explanation:
Hydrogen bonding occurs when hydrogen is covalently bonded to a highly electronegative atom such as fluorine, chlorine nitrogen, oxygen etc. Hence the dominant intermolecular force in HF is hydrogen bonding.
CBr4 is nonpolar because the molecule is tetrahedral and the individual C-Br dipole moments cancel out leaving the molecule with a zero dipole moment hence the dominant intermolecular force are the dispersion forces.
NF3 has a resultant dipole moment hence the molecules are held together by dipole-dipole interaction.
Answer: Density (ρ) = 1.25 gram/liter
Explanation:

= 1.25 gram/liter
Gaseous Matter is composed of composed particles that's packed loosely & does not have a defined shape or volume.
Answer:
Explanation:
Upon arrival we needed to hunt in this new land we only had five refills and they needed 50 g of gunpowder to be shot once. We only have 15 pounds of gunpowder. It is taking six shots to kill one of these wild turkeys. How many turkeys can be shot with 15 pounds of gunpowder?
If we had plenty of refills, and it takes 6 shots to kill a wild turkey at 50 gms of gunpowder per shot, then each turkey requires 6X50 =300gms of gunpowder. We have 15X454 gms of gunpowder and have the potential to kill 15X454/300=22.7 or 22 turkeys.and it takes 6 shots to kill a wild turkey.
The limiting reagent is the number of refills, and withonly 5, we are out of luck and can't kill one turkey
Answer:
Explanation:
As per Boltzman equation, <em>kinetic energy (KE)</em> is in direct relation to the <em>temperature</em>, measured in absolute scale Kelvin.
Then, <em>the temperature at which the molecules of an ideal gas have 3 times the kinetic energy they have at any given temperature will be </em><em>3 times</em><em> such temperature.</em>
So, you must just convert the given temperature, 32°F, to kelvin scale.
You can do that in two stages.
- First, convert 32°F to °C. Since, 32°F is the freezing temperature of water, you may remember that is 0°C. You can also use the conversion formula: T (°C) = [T (°F) - 32] / 1.80
- Second, convert 0°C to kelvin:
T (K) = T(°C) + 273.15 K= 273.15 K
Then, <u>3 times</u> gives you: 3 × 273.15 K = 819.45 K
Since, 32°F has two significant figures, you must report your answer with the same number of significan figures. That is 820 K.