1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
wel
3 years ago
5

In an LC circuit at one time the charge stored by the capacitor is 10 mC and the current is 3.0 A. If the frequency of the circu

it is (1/(4.0)) kHz, when the charge stored is 6.0 mC, what is the current?
Physics
1 answer:
Ronch [10]3 years ago
3 0

Answer:

i_2=3.61\ A

Explanation:

<u>LC Circuit</u>

It's a special circuit made of three basic elements: The AC source, a capacitor, and an inductor. The charge, current, and voltage are oscillating when there is an interaction between the electric and magnetic fields of the elements. The following variables will be used for the formulas:

q, q_1, q_2 = charge of the capacitor in any time t, t_1, t_2

q_o = initial charge of the capacitor

\omega=angular frequency of the circuit

i, i_1, i_2 = current through the circuit in any time t, t_1, t_2

The charge in an LC circuit is given by

q(t) = q_0 \, cos (\omega t )

The current is the derivative of the charge

\displaystyle i(t) = \frac{dq(t)}{dt} = - \omega q_0 \, sin(\omega t).

We are given

q_1=10\ mc=0.01\ c, i_1=3\ A,\ q_2=6\ mc=0.006\ c\ ,\ f=\frac{1000}{4\pi}

It means that

q(t_1) = q_0 \, cos (\omega t_1 )=q_1\ .......[eq 1]

i(t_1) = - \omega q_0 \, sin(\omega t_1)=i_1.........[eq 2]

From eq 1:

\displaystyle cos (\omega t_1 )=\frac{q_1}{q_0}

From eq 2:

\displaystyle sin(\omega t_1)=-\frac{i_1}{\omega q_0}

Squaring and adding the last two equations, and knowing that

sin^2x+cos^2x=1

\displaystyle \left ( \frac{q_1}{q_0} \right )^2+\left ( \frac{i_1}{\omega q_0} \right )^2=1

Operating

\displaystyle \omega^2q_1^2+i_1^2=\omega^2q_o^2

Solving for q_o

\displaystyle q_o=\frac{\sqrt{\omega^2q_1^2+i_1^2}}{\omega}

Now we know the value of q_0, we repeat the procedure of eq 1 and eq 2, but now at the second time t_2, and solve for i_2

\displaystyle \omega^2q_2^2+i_2^2=\omega^2q_o^2

Solving for i_2

\displaystyle i_2=w\sqrt{q_o^2-q_2^2}

Now we replace the given values. We'll assume that the placeholder is a pi for the frequency, i.e.

\displaystyle f=\frac{1}{4\pi}\ KHz

w=2\pi f=500\ rad/s

\displaystyle q_o=\frac{\sqrt{(500)^2(0.01)^2+3^2}}{500}

q_0=0.01166\ c

Finally

\displaystyle i_2=500\sqrt{0.01166^2-.006^2}

i_2=5\ A

You might be interested in
All of the orbitals in a given subshell have the same value of the __________ quantum number.
Gelneren [198K]
All of the orbitals in a given subshell have the same value of the "<span>magnetic and principal" quantum number

Hope this helps!</span>
3 0
3 years ago
1.) What causes ocean tides
BigorU [14]

Answer: Tides are periodic rises and falls of large bodies of water. Tides are caused by gravitational interaction between the earth and the moon. The gravitational attraction of the moon causes the oceans to bulge out in the direction of the moon.

4 0
3 years ago
Read 2 more answers
What is the acceleration of a Porsche that can go from 15 mi/hr to 75 mi/hr in 4 seconds?
Elodia [21]

Hi there!

Acceleration = change in velocity / change in time = Δv/Δt

Thus:

a = (75 - 15)/4 = 60/4 = 15 mi/hr²

8 0
2 years ago
Read 2 more answers
To decrease the angle between the anterior surface of the foot and anterior surface of the lower leg is described as:
Westkost [7]

Answer:

dorsiflexion

Explanation:

To decrease the angle between the anterior surface of the foot and anterior surface of the lower leg is described as: dorsiflexion

7 0
3 years ago
Read 2 more answers
Point charges of 21.0 μC and 47.0 μC are placed 0.500 m apart. (a) At what point (in m) along the line connecting them is the el
rewona [7]

Answer:

a) x = 0.200 m

b)E = 3.84*10^{-4} N/C

Explanation:

q_1 = 21.0\mu C

q_1 = 47.0\mu C

DISTANCE BETWEEN BOTH POINT CHARGE = 0.5 m

by relation for electric field we have following relation

E = \frac{kq}{x}^2

according to question E = 0

FROM FIGURE

x is the distance from left point charge where electric field is zero

\frac{k21}{x}^2 = \frac{k47}{0.5-x}^2

solving for x we get

\frac{0.5}{x} = 1+ \sqrt{\frac{47}{21}}

x = 0.200 m

b)electric field at half way mean x =0.25

E =\frac{k*21*10^{-6}}{0.25^2} -\frac{k*47*10^{-6}}{0.25^2}

E = 3.84*10^{-4} N/C

6 0
3 years ago
Read 2 more answers
Other questions:
  • A 0.15 kg baseball is pushed with 100 N force. what will its acceleration be?
    6·1 answer
  • An electrically neutral balloon is rubbed on cloth and becomes positively charged. What can be said about its mass?
    10·2 answers
  • A moving rope (parallel to the slope) is used to pull skiers up the mountain. If the slope of the hill is 37" and friction is ne
    13·1 answer
  • A 1000kg truck traveling at 108km/h skids 10m before it stops. What is the magnitude of the frictional force acting on the car?
    8·1 answer
  • A farmer lifts his hay bales into the top loft of his barn by walking his horse forward with a constant velocity of 1 ft/s. Dete
    15·1 answer
  • Suppose two equal charges of 0.65 C each are separated by a distance of 2.5 km in air. What is the magnitude of the force acting
    5·1 answer
  • According to the law of universal gravitation, any two objects are attracted to each other. The strength of the gravitational fo
    7·1 answer
  • A woman walked 115 m. As she did so, her speed increased from 4.20 m/s to 5.00 m/s. How long did it take her to walk this distan
    14·1 answer
  • How do animal behaviors affect the probability of reproductive success?
    11·2 answers
  • When a golf ball is hit, it travels at 41 meters per second. The mass of a golf ball is 0.045kg. Calculate the kinetic energy of
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!