We will solve this question using the second law of motion which states that force is directly equal to the product of mass and acceleration.

Where,
- F is force
- m is mass
- a is acceleration
In our case,
- F = ?
- m = 2500 kg
- a = 20m/s

<em>Thus, The force of 50000 Newton is required to accelerate a car of 2500 kg...~</em>
200 joules of work energy are involved. That's all we need to know to answer the question. Once we know that 200 joules of work energy are involved, we don't care what was lifted, or how far, or how long it took, or how many people worked on it, or how much they were paid, or what was the distribution of their gender identities, or the ethnic diversity among the team. or what day each of them celebrates as their sabbath. Any other information besides the 200 joules is only there to distract us, and see whether we're paying attention.
Power = (work or energy) / (time to do the work or move the energy)
Power = (200 joules) / (5 seconds)
<em>Power = 40 watts</em>
An object with more mass has more kinetic energy than an object with less mass, if both objects are moving at the same speed. <em>(c)</em>
Answer:
The answer is 218
Explanation:
Weight = mass * gravitational acceleration
weight is represented by F
F = 25kg (8.7)
(I'm pretty sure that you don't have to include the meters per second/per second thing)
The half life is 30 minutes.
30 mins- 1/2 left
60 mins- 1/4 left
90 mins- 1/8 left
120 mins- 1/16 left
120 mins= 2 hours