1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ganezh [65]
1 year ago
10

If a bender can be used to bend 3/4-inch rmc, then it can also be used to bend__________emt.

Physics
1 answer:
USPshnik [31]1 year ago
3 0

A bender may also be used to bend 1-inch emt if it can bend 3/4-inch rmc.

<h3>A hand bender is what?</h3>

hand bender. a device with a diameter of no more than 1-1/4 in. that is used to bend EMT. To prevent crimping or flattening the conduit during bending, hand benders offer a radius that supports the conduit.

<h3>When would you utilize a hand bending device?</h3>

The user can produce very close bends with hockeys because they are 60% smaller than benders. Generally speaking, you should use a hand bender most of the time and reserve the hickey for when you need to create several really tight bends that a hand bender is unable to accomplish.

learn more about bender here

<u>brainly.com/question/9721733</u>

#SPJ4

You might be interested in
In general, metalloids are slightly reactive.
algol [13]
Yes, in general, metalloids are slightly reactive.
6 0
3 years ago
Read 2 more answers
What is produced as the result of unequal warming of the earth's surface?
Soloha48 [4]
Unusual precipitation patterns 
7 0
3 years ago
If you drop a bowling ball, a tennis ball, and a feather from the top of a tall building at the same time which one will hit the
Whitepunk [10]
In the absence of air resistance the result is D .
6 0
3 years ago
Read 2 more answers
X-rays with an energy of 300 keV undergo Compton scattering from a target. If the scattered rays are detected at 30 relative to
lys-0071 [83]

Answer:

a) \Delta \lambda = \lambda' -\lambda_o = \frac{h}{m_e c} (1-cos \theta)

For this case we know the following values:

h = 6.63 x10^{-34} Js

m_e = 9.109 x10^{-31} kg

c = 3x10^8 m/s

\theta = 37

So then if we replace we got:

\Delta \lambda = \frac{6.63x10^{-34} Js}{9.109 x10^{-31} kg *3x10^8 m/s} (1-cos 37) = 4.885x10^{-13} m * \frac{1m}{1x10^{-15} m}= 488.54 fm

b) \lambda_0 = \frac{hc}{E_0}

With E_0 = 300 k eV= 300000 eV

And replacing we have:

\lambda_0 = \frac{1240 x10^{-9} eV m}{300000eV}=4.13 x10^{-12}m = 4.12 pm

And then the scattered wavelength is given by:

\lambda ' = \lambda_0 + \Delta \lambda = 4.13 + 0.489 pm = 4.619 pm

And the energy of the scattered photon is given by:

E' = \frac{hc}{\lambda'}= \frac{1240x10^{-9} eVm}{4.619x10^{-12} m}=268456.37 eV - 268.46 keV

c) E_f = E_0 -E' = 300 -268.456 kev = 31.544 keV

Explanation

Part a

For this case we can use the Compton shift equation given by:

\Delta \lambda = \lambda' -\lambda_0 = \frac{h}{m_e c} (1-cos \theta)

For this case we know the following values:

h = 6.63 x10^{-34} Js

m_e = 9.109 x10^{-31} kg

c = 3x10^8 m/s

\theta = 37

So then if we replace we got:

\Delta \lambda = \frac{6.63x10^{-34} Js}{9.109 x10^{-31} kg *3x10^8 m/s} (1-cos 37) = 4.885x10^{-13} m * \frac{1m}{1x10^{-15} m}= 488.54 fm

Part b

For this cas we can calculate the wavelength of the phton with this formula:

\lambda_0 = \frac{hc}{E_0}

With E_0 = 300 k eV= 300000 eV

And replacing we have:

\lambda_0 = \frac{1240 x10^{-9} eV m}{300000eV}=4.13 x10^{-12}m = 4.12 pm

And then the scattered wavelength is given by:

\lambda ' = \lambda_0 + \Delta \lambda = 4.13 + 0.489 pm = 4.619 pm

And the energy of the scattered photon is given by:

E' = \frac{hc}{\lambda'}= \frac{1240x10^{-9} eVm}{4.619x10^{-12} m}=268456.37 eV - 268.46 keV

Part c

For this case we know that all the neergy lost by the photon neds to go into the recoiling electron so then we have this:

E_f = E_0 -E' = 300 -268.456 kev = 31.544 keV

3 0
3 years ago
Read 2 more answers
A uniformly charged, one-dimensional rod of length L has total positive charge Q. Itsleft end is located at x = ????L and its ri
GREYUIT [131]

Answer:

|\vec{F}| = \frac{1}{4\pi\epsilon_0}\frac{qQ}{L}(\ln(L+x_0)-\ln(x_0))

Explanation:

The force on the point charge q exerted by the rod can be found by Coulomb's Law.

\vec{F} = \frac{1}{4\pi\epsilon_0}\frac{q_1q_2}{r^2}\^r

Unfortunately, Coulomb's Law is valid for points charges only, and the rod is not a point charge.

In this case, we have to choose an infinitesimal portion on the rod, which is basically a point, and calculate the force exerted by this point, then integrate this small force (dF) over the entire rod.

We will choose an infinitesimal portion from a distance 'x' from the origin, and the length of this portion will be denoted as 'dx'. The charge of this small portion will be 'dq'.

Applying Coulomb's Law:

d\vec{F} = \frac{1}{4\pi\epsilon_0}\frac{qdq}{x + x_0}(\^x)

The direction of the force on 'q' is to the right, since both charges are positive, and they repel each other.

Now, we have to write 'dq' in term of the known quantities.

\frac{Q}{L} = \frac{dq}{dx}\\dq = \frac{Qdx}{L}

Now, substitute this into 'dF':

d\vec{F} = \frac{1}{4\pi\epsilon_0}\frac{qQdx}{L(x+x_0)}(\^x)

Now we can integrate dF over the rod.

\vec{F} = \int{d\vec{F}} = \frac{1}{4\pi\epsilon_0}\frac{qQ}{L}\int\limits^{L}_0 {\frac{1}{x+x_0}} \, dx = \frac{1}{4\pi\epsilon_0}\frac{qQ}{L}(\ln(L+x_0)-\ln(x_0))(\^x)

4 0
3 years ago
Other questions:
  • Two bar magnets are labeled A and B. The ends of each magnet are numbered 1 or 2, but the poles are not labeled. When A1 is brou
    6·2 answers
  • Name the part of the eye that regulates the size of the passage through which light enters.
    5·1 answer
  • How much heat is released to freeze 47.30 grams of copper at its freezing point of 1,085°C? The latent heat of fusion of copper
    6·2 answers
  • With a frequency of 500 hz, what is the period of a wave
    9·1 answer
  • Jake is in chemistry class. He makes a list of the chemicals his instructor described and the properties of each.
    12·2 answers
  • The potential (relative to infinity) at the midpoint of a square is 3.0 V when a point charge of +Q is located at one of the cor
    9·1 answer
  • What amount of temperature do you need to make a metamorphic rock?
    11·1 answer
  • 6–3 The current through a 0.1‐μF capacitor is a rectangular pulse with an amplitude of 2 mA and a duration of 5 ms. Find the cap
    14·1 answer
  • In case of collision of objects in two dimensions which statement is true after the collision?
    11·2 answers
  • A tennis player tosses a tennis ball straight up and then catches it after 2.07 s at the same height as the point of release.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!