Answer:
the rate of the change of the length of the shadow is - 0.8625 m/s.
The negative(-) sign means the length of the shadow decreases at a rate of 0.8625 m/s.
Explanation:
Given the data in the question;
Let x represent the man's distance from building,
initially x = 1m2
dx/d t= -2.3 m/s
Also Let y represent shadow height
so we determine dy/dt when x is 4m from the building
form the image description of the problem, we see two-like triangles with the same base and height ratios
so
2 / (12-x) = y / 12
24 = y(12 - x )
y = 24 / (12-x)
dy/dt = 24/(12-x)² × dx/dt
Now at x = 4,
we substitute
dy/dt will be;
⇒ 24/(12 - 4)² × -2.3
= 24/64 - 2.3
= 0.375 × -2.3
dy/dt = - 0.8625 m/s
Therefore, the rate of the change of the length of the shadow is - 0.8625 m/s.
The negative(-) sign means the length of the shadow decreases at a rate of 0.8625 m/s.
Answer:
See the explanation below.
Explanation:
A lever is a simple machine that changes the magnitude and direction of the force applied to move an object. Minimizes the force needed to lift the object.
By means of the following image, we can see the principle of operation of a lever.
The load can be moved thanks to the force multiplied by the distance to the fulcrum.
PART A)
Electrostatic potential at the position of origin is given by

here we have



now we have


Now work done to move another charge from infinite to origin is given by

here we will have

so there is no work required to move an electron from infinite to origin
PART B)
Initial potential energy of electron




Now we know



now by energy conservation we will have
So here initial total energy is sufficient high to reach the origin
PART C)
It will reach the origin
Answer:
26.8 seconds
Explanation:
To solve this problem we have to use 2 kinematics equations: *I can't use subscripts for some reason on here so I am going to use these variables:
v = final velocity
z = initial velocity
x = distance
t = time
a = acceleration


First let's find the final velocity the plane will have at the end of the runway using the first equation:


Now we can plug this into the second equation to find t:


Then using 3 significant figures we round to 26.8 seconds
Answer:
B. It is directly proportional to the source charge.
Explanation:
Gauss's law states that the total (net) flux of an electric field at points on a closed surface is directly proportional to the electric charge enclosed by that surface.
This ultimately implies that, Gauss's law relates the electric field at points on a closed surface to the net charge enclosed by that surface.
This electromagnetism law was formulated in 1835 by famous scientists known as Carl Friedrich Gauss.
Mathematically, Gauss's law is given by this formula;
ϕ = (Q/ϵ0)
Where;
ϕ is the electric flux.
Q represents the total charge in an enclosed surface.
ε0 is the electric constant.
Hence, the statement which is true of the electric field at a distance from the source charge is that it is directly proportional to the source charge.