Answer:
r = 4.24x10⁴ km.
Explanation:
To find the radius of such an orbit we need to use Kepler's third law:

<em>where T₁: is the orbital period of the geosynchronous Earth satellite = 1 d, T₂: is the orbital period of the moon = 0.07481 y, r₁: is the radius of such an orbit and r₂: is the orbital radius of the moon = 3.84x10⁵ km. </em>
From equation (1), r₁ is:
Therefore, the radius of such an orbit is 4.24x10⁴ km.
I hope it helps you!
Answer:
From the second law of motion:
F = ma
we are given that the force applied on the block is 20N and the block accelerates at an acceleration of 4 m/s/s
So, F= 20N and a = 4 m/s/s
Replacing the variables in the equation:
20 = 4* m
m = 20 / 4
m = 5 kg
Answer:
The smallest separation distance between the speakers is 0.71 m.
Explanation:
Given that,
Two speakers, one directly behind the other, are each generating a 240-Hz sound wave, f = 240 Hz
Let the speed of sound is 343 m/s in air. The speed of sound is given by the formula as :

To produce destructive interference at a listener standing in front of them,

So, the smallest separation distance between the speakers is 0.71 m. Hence, this is the required solution.
Answer:
m=417.24 kg
Explanation:
Given Data
Initial mass of rocket M = 3600 Kg
Initial velocity of rocket vi = 2900 m/s
velocity of gas vg = 4300 m/s
Θ = 11° angle in degrees
To find
m = mass of gas
Solution
Let m = mass of gas
first to find Initial speed with angle given
So
Vi=vi×tanΘ...............tan angle
Vi= 2900m/s × tan (11°)
Vi=563.7 m/s
Now to find mass
m = (M ×vi ×tanΘ)/( vg + vi tanΘ)
put the values as we have already solve vi ×tanΘ
m = (3600 kg ×563.7m/s)/(4300 m/s + 563.7 m/s)
m=417.24 kg