Answer:
The object's velocity would increase due to the change in force.
Explanation:
Answer:
32.3 m/s
Explanation:
The ball follows a projectile motion, where:
- The horizontal motion is a uniform motion at costant speed
- The vertical motion is a free fall motion (constant acceleration)
We start by analyzing the horizontal motion. The ball travels horizontally at constant speed of

and it covers a distance of
d = 165 m
So, the total time of flight of the ball is

In order to find the vertical velocity of the ball, we have now to analyze its vertical motion.
The vertical motion is a free-fall motion, so the ball is falling at constant acceleration; therefore we can use the following suvat equation:

where
is the vertical velocity at time t
is the initial vertical velocity
is the acceleration of gravity (taking downward as positive direction)
Substituting t = 3.3 s (the time of flight), we find the final vertical velocity of the ball:
An action-reaction pair would be a pair in which one of the elements exerts a force on the other element (action), and then the other element would respond to this force by exerting another force in the opposite direction (reaction).
From the given choices, we will see that:
For choice A, the moon exerts a force on the earth by pulling it (action) and the earth responds to this force by pulling the moon (reaction in opposite direction of the action).
Therefore, the correct choice would be:
A. <span>The Moon Pulls on Earth, and Earth pulls back on the moon.</span>
Answer:
Part a)
When spring compressed by 2 cm
H = 1.47 m
Part b)
When spring is compressed by 4 cm
H = 5.94 m
Explanation:
Part a)
As we know that the spring is compressed and released
so here spring potential energy is converted into gravitational potential energy at its maximum height
So we will have


so we have

Part b)
Similarly when spring is compressed by 4 cm
then we have


so we have
