Finding percent composition is fairly easy. You only need to divide the mass of an element by the total mass of the compound. We can do this one element at a time.
First, let's find the total mass by using the masses of the elements given on the periodic table.
7 x 12.011 (mass of Carbon) = 84.077
5 x 1.008 (mass of Hydrogen) = 5.04
3 x 14.007 (mass of Nitrogen) = 42.021
6 x 15.999 (mass of Oxygen) = 95.994
Add all of those pieces together.
84.077 + 5.04 + 42.021 + 95.994 = 227.132 g/mol is your total. Since we also just found the mass of each individual element, the next step will be very easy.
Carbon: 84.077 / 227.132 = 0.37016 ≈ 37.01 %
Hydrogen: 5.04 / 227.132 = 0.022189 ≈ 2.22 %
Nitrogen: 42.021 / 227.132 = 0.185 ≈ 18.5 %
Oxygen: 95.994 / 227.132 = 0.42263 ≈ 42.26 %
You can check your work by making sure they add up to 100%. The ones I just found add up to 99.99, which is close enough. A small difference (no more than 0.03 in my experience) is just a matter of where you rounded your numbers.
Lavoisier is known as the “Father of Modern Chemistry” or the “Father of Chemistry”.
He is famous for isolating oxygen and establishing the law of conservation of mass.
Answer:
2.103 J/C
Explanation:
Quantity of heat = Heat Capacity * Temperature change
Heat Capacity = Quantity of heat / Temperature Change
Heat Capacity = 61/29
Heat Capacity = 2.103 J/C
Some of the NH₄+ will combine with the OH- and shift the equilibrium backwards and from NH₄OH to balance the change produced by addition of NH₄+ ions.
Answer:
a) Ba(OH)₂.8H₂O(s) + <em>2 </em>NH₄SCN(s) → Ba(SCN)₂(s) +<em>10</em> H₂O(l) + <em>2</em> NH₃(g)
b) 3.14g must be added
Explanation:
a) For the reaction:
Ba(OH)₂.8H₂O(s) + NH₄SCN(s) → Ba(SCN)₂(s) + H₂O(l) + NH₃(g)
As you see, there are 8 moles of water in reactants and 2 moles of oxygen in octahydrate, thus, water moles must be 10:
Ba(OH)₂.8H₂O(s) + NH₄SCN(s) → Ba(SCN)₂(s) +<em>10</em> H₂O(l) + NH₃(g)
To balance hydrogens, the other coefficients are:
Ba(OH)₂.8H₂O(s) + <em>2 </em>NH₄SCN(s) → Ba(SCN)₂(s) +<em>10</em> H₂O(l) + <em>2</em> NH₃(g)
b) As you see in the balanced reaction, 1 mole of barium hydroxide octahydrate reacts with 2 moles of NH₄SCN. 6.5g of Ba(OH)₂.8H₂O are:
6.5 g × (1mol / 315.48g) =<em> 0.0206moles of Ba(OH)₂.8H₂O</em>. Thus, moles of NH₄SCN that must be used for a complete reaction are:
0.0206moles of Ba(OH)₂.8H₂O × ( 2 mol NH₄SCN / 1 mol Ba(OH)₂.8H₂O) = <em>0.0412moles of NH₄SCN</em>. In grams:
0.0412moles of NH₄SCN × ( 76.12g / 1mol) = <em>3.14g must be added</em>