Explanation:
The attraction between solute particles affect its ability to dissolve in the solution because more is the attraction between particles less will be the chances that solute particles will combine to the solvent particles.
As a result, there will be decrease in solubility with increase in force of attraction between solute particles.
Whereas when there is less force of attraction between solute particles then more easily solute particles will combine with the solvent particles.
Hence, with decrease in force of attraction between solute particles, the rate of dissolution will increase.
True because it s all true
Answer: precipitation of
from
and
ions in solution
Explanation:
Entropy is the measure of randomness or disorder of a system. If a system moves from an ordered arrangement to a disordered arrangement, the entropy is said to decrease and vice versa.
is positive when randomness increases and
is negative when randomness decreases.
a) precipitation of
from
and
ions in solution : As ions are getting solidified, entropy decreases.
b) dissolution of
in water: The compounds dissociates into ions, entropy increases.
c) melting solid gold into liquid gold: The randomness increases, entropy increases.
d) evaporation of Hg(l) to form Hg(g) : The randomness increases, entropy increases.
e) mixing of two gases into one container : The randomness increases, entropy increases.
Answer:
I have for Decompostion
Explanation:
A decomposition reaction occurs when one reactant breaks down into two or more products. It can be represented by the general equation: AB → A + B. In this equation, AB represents the reactant that begins the reaction, and A and B represent the products of the reaction
Answer:
See Explanation
Explanation:
Given that;
N/No = (1/2)^t/t1/2
Where;
No = amount of radioactive isotope originally present
N = A mount of radioactive isotope present at time t
t = time taken
t1/2 = half life
N/1000=(1/2)^3/6
N/1000=(1/2)^0.5
N = (1/2)^0.5 * 1000
N= 707 unstable nuclei
Since the value of the initial activity of the radioactive material was not given, the activity of the radioactive material after three months is given by;
Decay constant = 0.693/t1/2 = 0.693/6 months = 0.1155 month^-1
Hence;
A=Aoe^-kt
Where;
A = Activity after a time t
Ao = initial activity
k = decay constant
t = time taken
A = Aoe^-3 *0.1155
A=Aoe^-0.3465