Most properly it is 1-10 centimeters
In a voltaic (galvanic) cell, oxidation occurs at the <u>anode</u> and is where <u>anions</u> in the salt bridge moves toward.
<h3>What is Galvanic Cell ?</h3>
Galvanic Cell or Voltaic Cell is an electrochemical cell that converts the energy of spontaneous redox reactions into electrical energy. In galvanic cell oxidation occurs at the anode and reduction occurs at the cathode. The anode is positive and cathode is negative, anode attracts anions from solution in an electrolytic cell.
Thus from the above conclusion we can say that In a voltaic (galvanic) cell, oxidation occurs at the <u>anode</u> and is where <u>anions</u> in the salt bridge moves toward.
Learn more about the Galvanic Cell here: brainly.com/question/15096829
#SPJ1
C. Oxidized and reduced are the same.
To balance this equation, first we should consider balancing C because it only presents in one reactant and one product. Assuming the coefficient of C6H6 is 1, there are 6 C's in the reactant, so it generates 6CO2. Then consider balancing H for the same reason. If the coefficient of C6H6 is 1, there are 6 H's in the reactant, so it generates 3H2O.
Now that the coefficient of the products are determined, we can balance O. There are 6*2=12 O's in CO2 and 3*1=3 O's in H2O. So the total number of O in the products is 12+3 = 15. O2 is the only reactant that contains O, so to balance the equation, the coefficient of O2 should be 15/2.
Now the equation looks like:
C6H6 + 15/2O2 ⇒ 6CO2 + 3H2O.
Times both sides of the equation by 2 results the final answer:
2C6H6 + 15O2 ⇒ 12CO2 + 6H2O
Answer:
will be 90054 J
Explanation:
Number of moles = (mass)/(molar mass)
Molar mass of
= 134.45 g/mol
So, 1.00 g of
=
of
= 0.00744 mol of 
0.00744 mol of
produces 670 J of heat
So, 1 mol of
produces
of heat or 90054 J of heat