The IMA of the pulley shown is 2.
Answer:
The portfolio should invest 48.94% in equity while 51.05% in the T-bills.
Explanation:
As the complete question is not given here ,the table of data is missing which is as attached herewith.
From the maximized equation of the utility function it is evident that

For the equity, here as
is percentage of the equity which is to be calculated
is the Risk premium whose value as seen from the attached data for the period 1926-2015 is 8.30%
is the risk aversion factor which is given as 4.
is the standard deviation of the portfolio which from the data for the period 1926-2015 is 20.59
By substituting values.

So the weight of equity is 48.94%.
Now the weight of T bills is given as

So the weight of T-bills is 51.05%.
The portfolio should invest 48.94% in equity while 51.05% in the T-bills.
We will measure all angles from West, the negative x-axis and divide the journey into 3 parts:
P1 = 370y
P2 = 410cos(45)x + 410sin(45)y = 290x + 290y
P3 = 370cos(270 - 28)x + 370sin(270 - 28) = -174x - 327y
Overall displacement:
x = 290 - 174 = 116 m
y = 370 + 290 - 327 = 333 m
displacement = √(116² + 333²)
= 353 m
Direction:
tan(∅) = y/x
∅ = tan⁻¹ (333 / 116)
∅ = 70.8° from West.
Answer:
The speed of molecule decreases and temperature also decreases
Explanation:
Kinetic energy of the molecules of a subsance is directly proportional to the temperature of molecule So as the kinetic energy decrease, temperature also decreases. decreses their speed.
For a photographer that wishes to determine the color of light that he can use in a dark room that will not expose the films he is processing, having used a Blue Incandescent bulb, he should proceed to use a Red Incandescent bulb for the next trial.
The photographer in question is performing an experiment. For these kinds of experiments it is important to identify the variables present, which can be of three kinds:
- Control variables
- Dependent variables
- Independent variables
For this experiment, the dependent variable is the exposure of the light onto the films, given that this is what we wish to measure. The independent variable will be the color of the light being used which is what will affect the dependent variable.
The remaining variable must be the control variable. Unlike the previous variables, we can have more than one of these. The control variable is there to make sure that only the dependent variable is affecting the outcome. We do this by keeping the control variable the same through each trial, which is why the photographer should not change the type of bulb in the second experiment, changing only the color of the light.
To learn more visit:
brainly.com/question/1549017?referrer=searchResults