The answer is c. the force of his swing
At the time of the impact, there is a collision between two bodies moving in opposite directions.
The force exerted on the ball causes the change of velocity.
An object with more mass has more kinetic energy than an object with less mass, if both objects are moving at the same speed. <em>(c)</em>
Answer:
An image is formed on the retina with light rays converging most at the cornea and upon entering and exiting the lens. Rays from the top and bottom of the object are traced and produce an inverted real image on the retina. The distance to the object is drawn smaller than scale
1. The velocity of the spacecraft at position 2 is greater than the velocity of the craft at position 4.
This is due the gravity field of the Earth is used to accelerate the craft. This is true when in a specific point the direction of the movement of the craft is the same direction of the movement of the planet.
In this case the craft will be “catched” by the Earth’s gravitational field, making the craft to enter a circular orbit.
2. At point 1, the direction of the spacecraft changes because of the gravitational force between earth and the spacecraft.
As explained in the first answer, this is the exact point where the trajectory of the spacecraft enters into a circular orbit because of the attraction due gravity of the Earth and therefore changes its direction.
3. Position 3 represents the orbital path of Earth
Being this the orbital path of the Earth and considering the trajectory of the craft, the condition of accelerating the craft is accomplished. If the orbital path of the Earth were the opposite, the effect on the craft would be braking.
Note all of these is related to the gravitational assistance, this consists in a maneuver in which the energy of the gravitational field of a planet or satellite is used to obtain an acceleration or braking of the probe or craft, changing its trajectory.
To learn more about velocity of the spacecraft : brainly.com/question/11900446
#SPJ4
Answer:
8.3m/s
Explanation:
Given parameters:
mass of clay ball = 5kg
Speed of clay ball = 25m/s
mass of clay ball at rest = 10kg
speed of clay ball at rest = 0m/s
Unknown:
Velocity after collision = ?
Solution:
Since the balls stick together, this is an inelastic collision:
m1v1 + m2v2 = v(m1 + m2)
5(25) + 10(0) = v (5 + 10)
125 = 15v
v = 8.3m/s