This question involves the concepts of echo, ultrasonic images, ultrasonic sound waves.
The process of ultrasonic images uses the "echo" property of the sound waves.
Echo is the property of the sound wave by the virtue of which the sound wave reflects back to the source of the sound after hitting a surface or an object.
Ultrasonic images are obtained from inside organs of our body. This process involves the use of ultrasonic sound waves that have a frequency greater than 20,000 Hz. These sound waves are out of the range of audible sound by the human ear. When these ultrasonic sound waves are sent in form of pulses into the human body by the use of probes, they reflect back from the tissues of different organs to the probe. The probe then records the reflection properties of these sound waves and displays them in form of an image, known as ultrasonic images.
Learn more about echo here:
brainly.com/question/14335186?referrer=searchResults
The attached picture shows the process of ultrasonic imaging.
Answer:
Waves with high frequencies have shorter wavelengths that work better than low frequency waves for successful echolocation.
Explanation:
To understand why high-frequency waves work better than low frequency waves for successful echolocation, first we have to understand the relation between frequency and wavelength.
The relation between frequency and wavelength is given by
λ = c/f
Where λ is wavelength, c is the speed of light and f is the frequency.
Since the speed of light is constant, the wavelength and frequency are inversely related.
So that means high frequency waves have shorter wavelengths, which is the very reason for the successful echolocation because waves having shorter wavelength are more likely to reach and hit the target and then reflect back to the dolphin to form an image of the object.
Thus, waves with high frequencies have shorter wavelengths that work better than low frequency waves for successful echolocation.
Answer:
C) unbalanced
Explanation:
Equal forces acting in opposite directions are called balanced forces. Balanced forces acting on an object will not change the object's motion. When you add equal forces in opposite direction, the net force is zero.