Initial velocity, u = 4 m/s
acceleration due to gusts of wind = 3 m/s^2
time, t = 1 min = 60 s
Let distance travelled = S
From equation of motion,

Thus, the boat would have traveled 5640m after gusts picked up.
Answer:
20 J/g
Explanation:
In this question, we are required to determine the latent heat of vaporization
- To answer the question, we need to ask ourselves the questions:
What is latent heat of vaporization?
- It is the amount of heat required to change a substance from its liquid state to gaseous state without change in temperature.
- It is the amount of heat absorbed by a substance as it boils.
How do we calculate the latent heat of vaporization?
- Latent heat is calculated by dividing the amount of heat absorbed by the mass of the substance.
In this case;
- Mass of the substance = 20 g
- Heat absorbed as the substance boils is 400 J (1000 J - 600 J)
Thus,
Latent heat of vaporization = Quantity of Heat ÷ Mass
= 400 Joules ÷ 20 g
= 20 J/g
Thus, the latent heat of vaporization is 20 J/g
Answer:

Explanation:
Here we can use energy conservation
As per energy conservation conditions we know that work done by external source is converted into kinetic energy of the disc
Now we have

now we know that work done is product of force and displacement
so here we have


now for moment of inertia of the disc we will have



now from above equation we will have


By definition, we have that the mechanical advantage is given by the following equation:

Where,
W: is the load
T: is the tension
Substituting the values in the given equation we have:

Therefore, the mechanical advantage is equal to 5.
Answer: The mechanical advantage of this machine is: MA = 5