Answer:
London dispersion forces
Explanation:
There are different forces of attraction that helps to hold atoms or Molecules of a particular substance together. Some of the forces of attraction are ionic/ electrovalent bond, covalent bond, vander waals forces of attraction and so on.
Under the vander waals forces of attraction we have what is known as the London dispersion forces. This force of attraction is a very weak and it is commonly found in the atoms of noble gases.
The intermolecular force of attraction in which we are talking about that is london dispersion forces is formed as a result of the formation of non-polar dipoles which are not permanent.
Answer:
Explanation:
Stress causes the build up of strain, which causes the deformation of rocks and the Earth's crust. Compressional stresses cause a rock to shorten. Tensional stresses cause a rock to elongate, or pull apart.
Answer:
The atomic number of silicon is 14 while atomic mass of carbon is 14.
Explanation:
An atom consist of electron, protons and neutrons. Protons and neutrons are present with in nucleus while the electrons are present out side the nucleus.
All these three subatomic particles construct an atom. A neutral atom have equal number of proton and electron. In other words we can say that negative and positive charges are equal in magnitude and cancel the each other. For example if neutral atom has 6 protons than it must have 6 electrons. The sum of neutrons and protons is the mass number of an atom while the number of protons are number of electrons is the atomic number of an atom.
In given atoms ¹⁴₆C and ²⁸₁₄Si the atomic mass of carbon is 14 while the atomic number of silicon is 14. It means silicon has 14 electrons or protons while carbon has 6 protons or electrons because its atomic number is 6. Carbon has 6 protons and 8 neutrons in its nucleus while silicon has 14 protons and 14 neutrons in its nucleus.
In C:
Number of neutrons + protons = 8 + 6 = 14 amu (mass number)
Number of electrons = 6
In Si:
Number of neutrons + protons = 14 + 14 = 28 amu (mass number)
Number of electrons = 14
Answer:
K^+ and NO3^-
Explanation:
In a balanced ionic equation, we usually see the species that react to yield the main product in the reaction.
Consider the reaction;
Pb(NO3)2(aq) +2 KI(aq) -------> PbI2(s) + 2KNO3(aq)
The main product in this reaction is PbI2. Hence the balanced ionic equation is;
Pb^2+(aq) + 2I^-(aq) ------> PbI2(s)
Notice that K^+ and NO3^- did not participate in this reaction. All ions that are part of the molecular equation but do not participate in the ionic reaction equation are called spectator ions. Hence K^+ and NO3^- are spectator ions in this reaction as can be seen clearly above.
Answer:

Explanation:
We are asked to find how many moles of sodium carbonate are in 57.3 grams of the substance.
Carbonate is CO₃ and has an oxidation number of -2. Sodium is Na and has an oxidation number of +1. There must be 2 moles of sodium so the charge of the sodium balances the charge of the carbonate. The formula is Na₂CO₃.
We will convert grams to moles using the molar mass or the mass of 1 mole of a substance. They are found on the Periodic Table as the atomic masses, but the units are grams per mole instead of atomic mass units. Look up the molar masses of the individual elements.
- Na: 22.9897693 g/mol
- C: 12.011 g/mol
- O: 15.999 g/mol
Remember the formula contains subscripts. There are multiple moles of some elements in 1 mole of the compound. We multiply the element's molar mass by the subscript after it, then add everything together.
- Na₂ = 22.9897693 * 2= 45.9795386 g/mol
- O₃ = 15.999 * 3= 47.997 g/mol
- Na₂CO₃= 45.9795386 + 12.011 + 47.997 =105.9875386 g/mol
We will convert using dimensional analysis. Set up a ratio using the molar mass.

We are converting 57.3 grams to moles, so we multiply by this value.

Flip the ratio so the units of grams of sodium carbonate cancel.




The original measurement of moles has 3 significant figures, so our answer must have the same. For the number we found that is the thousandth place. The 6 in the ten-thousandth place to the right tells us to round the 0 up to a 1.

There are approximately <u>0.541 moles of sodium carbonate</u> in 57.3 grams.