Answer:

Explanation:
Hello,
In this case, we can use the ideal gas equation:

So we know the temperature, pressure and volume, therefore we can easily compute the required moles as shown below:

Best regards.
Answer:
177.1 L
Explanation:
The excersise can be solved, by the Ideal Gases Law.
P . V = n . R . T
In first step we need to determine the moles of gas:
We convert T° from, C° to K → 20°C + 273 = 293K
We convert P from mmHg to atm → 760 mmHg = 1atm
1Dm³ = 1L → 190L
We replace: 190 L . 1 atm = n . 0.082 . 293K
(190L.atm) / 0.082 . 293K = 7.91 moles.
We replace equation at STP conditions (1 atm and 273K)
V = (n . R .T) / P
V = (7.91 mol . 0.082 . 273K) / 1atm = 177.1 L
We can also make a rule of three:
At STP conditions 1 mol of gas occupies 22.4L
Then, 7.91 moles will be contained at (7.91 . 22.4) /1 = 177.1L
The oxidation number of H is -1.
Sum of the oxidation numbers in each element =
charge of the complex
CaH₂ has 1 Ca atom and 2H atoms. The charge of
the complex is zero. Let’s say Oxidation number of H is "a".
Then,
<span> (+2)
+ 2 x a = 0 </span>
<span> +2 + 2a = 0</span>
2a = -2
a = -1
Hence, the oxidation number of Hydrogen atom in CaH₂ is -1
B) Mg is the alkaline earth metal w/12 protons so following the periodic table to the halogen in the same period is
Cl: Chlorine
C) The Neutral noble has w/ 18 electrons is argon so the metal in the same row is
Na: Sodium
Answer:
I think that gravity can be considered a force.
Explanation:
As the object falls, it moves faster and faster. Gravity is considered a universal force because it acts between any two masses anywhere in the universe. For example, there is a gravitational pull between the Sun and the Moon. Even small masses attract one another.
Hope this helped! :)