<h3>Solving for the measurements of Complementary Angles</h3><h3>
Answer:</h3>
and 
<h3>
Step-by-step explanation:</h3>
Recall that Angles that are complementary to each other add up to
.
Let
be the measure of the complementary angle.
If an angle is
more than its complementary angle, the measure of that angle is
. The sum of both angles are expressed
but since the have to add to
as they are complementary,
.
Solving for
:

Since the other angle measures
, we can plug in the value of
to find the measure of the angle.
Evaluating
:

The measure of the angles are
and 
Simplify (x3 + 3x2 + 5x – 4) – (3x3 – 8x2 – 5x + 6)
The first thing I have to do is take that "minus" sign through the parentheses containing the second polynomial. Some students find it helpful to put a "1" in front of the parentheses, to help them keep track of the minus sign.
Here's what the subtraction looks like, when working horizontally:
(x3 + 3x2 + 5x – 4) – (3x3 – 8x2 – 5x + 6)
(x3 + 3x2 + 5x – 4) – 1(3x3 – 8x2 – 5x + 6)
(x3 + 3x2 + 5x – 4) – 1(3x3) – 1 (–8x2) – 1(–5x) – 1(6)
x3 + 3x2 + 5x – 4 – 3x3 + 8x2 + 5x – 6
x3 – 3x3 + 3x2 + 8x2 + 5x + 5x – 4 – 6
–2x3 + 11x2 + 10x –10
And here's what the subtraction looks like, when going vertically:
x
3
−(3x
3
+3x
2
−8x
2
+5x
−5x
−4
+6)
In the horizontal addition (above), you may have noticed that running the negative through the parentheses changed the sign on each and every term inside those parentheses. The shortcut when working vertically is to not bother writing in the subtaction sign or the parentheses; instead, write the second polynomial in the second row, and then just flip all the signs in that row, "plus" to "minus" and "minus" to "plus".
\
x
3
–3x
3
−2x
3
+3x
2
+8x
2
+11x
2
+5x
+5x
+10x
−4
–6
−10
Either way, I get the answer:
–2x3 + 11x2 + 10x – 10
<u>Answers:</u>
These are the three major and pure mathematical problems that are unsolved when it comes to large numbers.
The Kissing Number Problem: It is a sphere packing problem that includes spheres. Group spheres are packed in space or region has kissing numbers. The kissing numbers are the number of spheres touched by a sphere.
The Unknotting Problem: It the algorithmic recognition of the unknot that can be achieved from a knot. It defined the algorithm that can be used between the unknot and knot representation of a closely looped rope.
The Large Cardinal Project: it says that infinite sets come in different sizes and they are represented with Hebrew letter aleph. Also, these sets are named based on their sizes. Naming starts from small-0 and further, prefixed aleph before them. eg: aleph-zero.
I hope this helps you
-36-7-9
-52
Answer:
-6re−r [sin(6θ) - cos(6θ)]
Step-by-step explanation:
the Jacobian is ∂(x, y) /∂(r, θ) = δx/δθ × δy/δr - δx/δr × δy/δθ
x = e−r sin(6θ), y = er cos(6θ)
δx/δθ = -6rcos(6θ)e−r sin(6θ), δx/δr = -sin(6θ)e−r sin(6θ)
δy/δθ = -6rsin(6θ)er cos(6θ), δy/δr = cos(6θ)er cos(6θ)
∂(x, y) /∂(r, θ) = δx/δθ × δy/δr - δx/δr × δy/δθ
= -6rcos(6θ)e−r sin(6θ) × cos(6θ)er cos(6θ) - [-sin(6θ)e−r sin(6θ) × -6rsin(6θ)er cos(6θ)]
= -6rcos²(6θ)e−r (sin(6θ) - cos(6θ)) - 6rsin²(6θ)e−r (sin(6θ) - cos(6θ))
= -6re−r (sin(6θ) - cos(6θ)) [cos²(6θ) + sin²(6θ)]
= -6re−r [sin(6θ) - cos(6θ)] since [cos²(6θ) + sin²(6θ)] = 1