Answer:
The very last one is a function
Step-by-step explanation:
The last one is a function because there are no y values that repeat. For example, If the points on one graph are like this; (1, 3) (2, 3); then it cannot be a function, the y values cannot repeat if it is a function.
To make things easier, just try to imagine vertical drawing lines through each point in every graph, if this imaginary vertical line passes more than one point in any graph, then that graph is not a function.
I hope this helps!! :D
Answer:
The sum of the probabilities is greater than 100%; and the distribution is too uniform to be a normal distribution.
Step-by-step explanation:
The sum of the probabilities of a distribution should be 100%. When you add the probabilities of this distribution together, you have
22+24+21+26+28 = 46+21+26+28 = 67+26+28 = 93+28 = 121
This is more than 100%, which is a flaw with the results.
A normal distribution is a bell-shaped distribution. Graphing the probabilities for this distribution, we would have a bar up to 22; a bar to 24; a bar to 21; a bar to 26; and bar to 28.
The bars would not create a bell-shaped curve; thus this is not a normal distribution.

![\sf \left[\begin{array}{cc}\sf 4&\sf 6\\ \sf 5 &\sf 8 \\ \sf 3 &\sf -2\end{array}\right]-\left[\begin{array}{cc}\sf 2&\sf 3\\ \sf 1 &\sf 4 \\ \sf -5&\sf3\end{array}\right]](https://tex.z-dn.net/?f=%5Csf%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Csf%204%26%5Csf%206%5C%5C%20%5Csf%205%20%26%5Csf%208%20%5C%5C%20%5Csf%203%20%26%5Csf%20-2%5Cend%7Barray%7D%5Cright%5D-%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Csf%202%26%5Csf%203%5C%5C%20%5Csf%201%20%26%5Csf%204%20%5C%5C%20%5Csf%20-5%26%5Csf3%5Cend%7Barray%7D%5Cright%5D)
Just substract corresponding terms
![\\ \sf\longmapsto \left[\begin{array}{cc}\sf 2 &\sf 3\\ \sf 4&\sf4\\ \sf 8&\sf -5\end{array}\right]](https://tex.z-dn.net/?f=%5C%5C%20%5Csf%5Clongmapsto%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Csf%202%20%26%5Csf%203%5C%5C%20%5Csf%204%26%5Csf4%5C%5C%20%5Csf%208%26%5Csf%20-5%5Cend%7Barray%7D%5Cright%5D)
Option B