1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
andrew11 [14]
3 years ago
11

(4y 2 – 5y) + (3y – 7y 2) – (2y 2 + 6y – 5) Simplify.

Mathematics
1 answer:
Elan Coil [88]3 years ago
4 0
<span>Equation at the end of step  1  :</span><span><span> (((4•(y2))-5y)+(3y-(7•(y2))))-((2y2+6y)-5) </span><span> Step  2  :</span></span><span>Equation at the end of step  2  :</span><span><span> (((4•(y2))-5y)+(3y-7y2))-(2y2+6y-5) </span><span> Step  3  :</span></span><span>Equation at the end of step  3  :</span><span> ((22y2 - 5y) + (3y - 7y2)) - (2y2 + 6y - 5) </span><span> Step  4  :</span><span> Step  5  :</span>Pulling out like terms :

<span> 5.1 </span>    Pull out like factors :

  <span> -5y2 - 8y + 5</span>  =  <span> -1 • (5y2 + 8y - 5)</span> 



I hope tht help

You might be interested in
Find the mean.<br> Z-score = -1.4<br> Standard Deviation: 7<br> x = 20
Umnica [9.8K]

Answer:

9.6

Step-by-step explanation:

8 0
3 years ago
Which shows the integers in order.
Igoryamba
The answer A shows the integers from greatest to least
5 0
3 years ago
Read 2 more answers
Can someone explain the steps to finding the perimeter of a semi-circle? I didn't really understand it during class. Thanks
andriy [413]
We know that the perimeter of a cylinder is 2πr we will find it as we do always. The perimeter will be :
2 pi r
= 2 pi * 20
= 40 pi
Because it says rounded to the nearest tenth the answer will be : 125.6 cm^3
Because we have a half of a cylinder we will just divide the answer we got by 2:
125.6cm^3 /2 =62.8
The answer is 62.8 cm^3
6 0
2 years ago
The lateral surface area S of a right circular cone is given by (equation given below). What radius should be used to produce a
Dima020 [189]
Given:
Lateral Area = π * r * (√h² + r²)

Lateral Area = 100 in² ; height = 5 in

I find it hard to derive the formula of r because of the radical sign. So, I'll just plug each radius to the formula to check confirm the given lateral area.

a) r = 1.52138 ⇒ LA = 24.98
b) r = 4.658 ⇒ LA = 100 
c) r = 78 ⇒ LA = 19152.68
d) r = 6.7432 ⇒ LA = 177.84

The radius is B.) r = 4.658 inches
7 0
2 years ago
Read 2 more answers
What is the best approximation of the projection of (5,-1) onto (2,6)?
Hatshy [7]

Answer:

Hence, the scalar projection of \vec a onto \vec b= \frac{\sqrt{10} }{5}, and  the vector projection of \vec a onto \vec b = \frac{1}{5} \hat i+\frac{3}{5} \hat j.

Step-by-step explanation:

We have given two points  (5, -1) and (2, 6).

Let,     \vec a=5\hat {i}-\hat {j}  and  \vec b= 2\hat {i}+6\hat{j} .

and we have calculate the projection of \vec a onto \vec b.

Now,

For the calculation of projection, first we need to calculate the dot product of  \vec a  and \vec b.

\vec a.\vec b=(5\hat {i}-\hat{j}).(2\hat{i}+6\hat{j})

     =10-6

     =4

then, we have to calculate the magnitude of \vec b.

   \mid {\vec {b}}\mid = \sqrt{2^{2}+6^{2}  } = \sqrt{40} = 2\sqrt{10}.

Now, the scalar projection of \vec a onto \vec b = \frac{\vec a.\vec b}{\mid b\mid}

                                                                 = \frac{4}{2\sqrt{10} }\frac{2}{\sqrt{10} } \times\frac{\sqrt{10} }{\sqrt{10} } =\frac{2\sqrt{10} }{10} = \frac{\sqrt{10} }{5}

and the vector projection of \vec a onto \vec b = \frac{\vec a. \vec b}{\mid\vec b \mid^{2} } . \vec b

                                                               = \frac{4}{40} . (2\hat i+ 6\hat j)

                                                                = \frac{1}{5} \hat i+\frac{3}{5} \hat j

Hence, the scalar projection of \vec a onto \vec b= \frac{\sqrt{10} }{5}, and  the vector projection of \vec a onto \vec b = \frac{1}{5} \hat i+\frac{3}{5} \hat j.

                                                               

6 0
3 years ago
Other questions:
  • When 2x - 3y = 6 is solved for y and put in the form of y = mx + b, which equation results?
    10·2 answers
  • Item 4 Evaluate. 6^2+(3⋅4)− 2^4
    12·2 answers
  • 2/3 of the product of 3/8 and 16
    6·1 answer
  • Estimate it’s the length in meters for poster. Explain
    12·1 answer
  • Which values from the given replacement set make up the solution set of the inequality? 2b–4≥2 ; {1,2,3,4} {1,2} {3,4} {1,2,3} {
    7·2 answers
  • Write the fraction or mixed number as a percent 7/8
    9·2 answers
  • -5/4-(-1/6) help please
    9·1 answer
  • Help me please please I really need this
    5·2 answers
  • Help!!!!!!!!
    7·2 answers
  • Lorreen sells 18 adult tickets, 23 student tickets, and 10 discount tickets for the school play. Write the ratio student tickets
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!