L = 2 W
B = L x W = 2 W²
Side Area = 2 W H + 2 L H = 2 H ( W + L ) = 6 H W
V = 2 W² H = 10
H = 5 / W²
Cost = 15 * 2 W² + 9 * 5/W
= 30 W² + 270/ W
C ` = 60 W - 270 / W²
= ( 60 W² - 270 ) / W² = 0
60 W² = 270
W ² = 270 : 60
W² = 4.5
W = √ 4.5 = 2.12
Cost (min) = 15 * 2 * 4.5 + 30 / 2.12 = 135 + 14.15 = $149.15
Answer: The cost of materials for the cheapest such container is $149.15.
So the person is out of pocket of $10.00
Answer:
i think its 75
Step-by-step explanation:
bend your head to the right and compare to a 90 degree square
it's acute
Answer:
C. 28 = (2x - 1)(x)
Step-by-step explanation:
There is a rectangular swimming pool.
Width of swimming pool is x
Length is one less than twice the width
Area of the swimming pool is 28 sq ft.
To Find : Equation could be used to model the area of the swimming pool.
Solution:
Since we are given that Length is one less than twice the width.
And width is x (given)
So, length = 2x-1
Area of the swimming pool is 28 sq ft.
Now ,
Formula of area of rectangle : Length*Width
⇒28= (2x-1)(x)
So, equation used to model the area of the swimming pool: 28= (2x-1)(x)
Hence Option c is correct.
I think b is y would 15 and x is 3 making 15=3•5 or 15•3=45