Two protons. Positive plus a positive will repel. Cheers.
The Olympic sport of curling is one that is practically designed to show Physics in motion. Curling is a sport in which two teams alternate sliding smoothed stone pucks down an ice rink court with the intent to seat their stone closest to the center of the target (called the house). Each team has eight stones, meaning that the team that goes second has the (could be) massive advantage of sending the last stone.
The mass of the stone is important in that the more massive a stone (m) and the speed at which it travels (v) dictates it's momentum (momentum=mxv). As the curling stone slides down the ice (which is relatively frictionless unless acted upon by other players or objects) and having inertia, continues in it's straight course (again, unless acted upon by outside forces). If the stone hits another stone, it transfers some of its momentum in an elastic collision to that stone and the original stone is deflected in a calculable manner.
Collisions are used in the game to either clear opponent's stones from the house or out of their defensive positions, or to make adjustments to one's stones present in the house, all based on the momentum of the moving stone, and its transference.
Answer:
6ms^-1
Explanation:
Given that the frequency difference is
( 563- 544) = 19
So alsoThe wavelength of each wave is = v/f = 344 /544
and there are 19 of this waves
So it is assumed that each motorcycle has moved 0.5 of this distance
in one second thus the speed of the motorcycles will be
=> 19/2 x 344/544 = 6.0 m/s
At a constant speed of 5.00 m/s, the speed at which the poodle completes a full revolution is

so that its period is
(where 1 revolution corresponds exactly to 360 degrees). We use this to determine how much of the circular path the poodle traverses in each given time interval with duration
. Denote by
the angle between the velocity vectors (same as the angle subtended by the arc the poodle traverses), then



We can then compute the magnitude of the velocity vector differences
for each time interval by using the law of cosines:


and in turn we find the magnitude of the average acceleration vectors to be

So that takes care of parts A, C, and E. Unfortunately, without knowing the poodle's starting position, it's impossible to tell precisely in what directions each average acceleration vector points.
Phase 1. Forethought/preaction—This phase precedes the actual performance; sets the stage for action; maps out the tasks to minimize the unknown; and helps to develop a positive mindset. Realistic expectations can make the task more appealing. Goals must be set as specific outcomes, arranged in order from short-term to long-term. We have to ask students to consider the following:
<span>When will they start?Where will they do the work?How will they get started?<span>What conditions will help or hinder their learning activities are a part of this phase?
</span></span>
Phase 2. Performance control—This phase involves processes during learning and the active attempt to utilize specific strategies to help a student become more successful.
We have to ask students to consider the following:
<span>Are students accomplishing what they hoped to do?Are they being distracted?Is this taking more time than they thought?Under what conditions do they accomplish the most?What questions can they ask themselves while they are working?<span>How can they encourage themselves to keep working (including self-talk—come on, get your work done so you can watch that television show or read your magazine!)
</span></span>
Phase 3. Self-reflection—This phase involves reflection after the performance, a self-evaluation of outcomes compared to goals.
We have to ask students to consider the following:
<span>Did they accomplish what they planned to do?Were they distracted and how did they get back to work?Did they plan enough time or did they need more time than they thought?<span>Under what conditions did they accomplish the most work.
Hope this helps!!!!!
</span></span>