Answer:
The greatest force of gravity on the ball will occur at the point when the ball is near to hit the ground
Explanation:
We know that the earth's center attracts everything towards its center with an acceleration of 9.8 m/s² so it simply means that the change in velocity must occur to produce acceleration. When the ball comes towards the earth, its speed continuously increases and it is at maximum level when it is about to hit the ground so this is the point where gravitational force is maximum.
I hope this helps ^_^
Answer: The coefficient of expansion for the wire
.
Explanation:
Original length of the wire = L= 410.0000 m
Initial temperature =
Final Temperature =
Increase in Length of the wire = 



The coefficient of expansion for the wire
.
Answer:
0.1 s
Explanation:
The net force on the log is F - f = ma where F = force due to winch = 2850 N, f = kinetic frictional force = μmg where μ = coefficient of kinetic friction between log and ground = 0.45, m = mass of log = 300 kg and g = acceleration due to gravity = 9.8 m/s² and a = acceleration of log
So F - f = ma
F - μmg = ma
F/m - μg = a
So, substituting the values of the variables into the equation, we have
a = F/m - μg
a = 2850 N/300 kg - 0.45 × 9.8 m/s²
a = 9.5 m/s² - 4.41 m/s²
a = 5.09 m/s²
Since acceleration, a = (v - u)/t where u = initial velocity of log = 0 m/s (since it was a rest before being pulled out of the ditch), v = final velocity of log = 0.5 m/s and t = time taken for the log to reach a speed of 0.5 m/s.
So, making t subject of the formula, we have
t = (v - u)/a
substituting the values of the variables into the equation, we have
t = (v - u)/a
t = (0.5 m/s - 0 m/s)/5.09 m/s²
t = 0.5 m/s ÷ 5.09 m/s²
t = 0.098 s
t ≅ 0.1 s
They are positive and remain inside the nucleus.
There are plant cells called chloroplasts, plants leave chloroplasts which have chlorophyll that capture and absorb light energy from the sun.