Answer:
v₂ = 97.4 m / s
Explanation:
Let's write the Bernoulli equation
P₁ + ½ ρ v₁² + ρ g y₁ = P₂ + ½ ρ v₂² + ρ g y₂
Index 1 is for tank and index 2 for exit
We can calculate the pressure in the tank with the equation
P = F / A
Where the area of a circle is
A = π r²
E radius is half the diameter
r = d / 2
A = π d² / 4
We replace
P = F 4 / π d²2
P₁ = 397 4 /π 0.058²
P₁ = 1.50 10⁵ Pa
The water velocity in the tank is zero because it is at rest (v1 = 0)
The outlet pressure, being open to the atmosphere is P1 = 1.13 105 Pa
Since the pipe is horizontal y₁ = y₂
We replace on the first occasion
P₁ = P₂ + ½ ρ v₂²
v₂ = √ (P1-P2) 2 / ρ
v₂ = √ [(1.50-1.013) 10⁵ 2/1000]
v₂ = 97.4 m / s
Kinetic Energy = 1/2mv^2
m= 1200kg
v= 24 m/s
KE = 1/2 (1200kg)(24m/s)^2 = 345,600 N
Answer:
the lever in which the fulcrum lies in middle is first
t
Answer:
The tires of a car support the weight of a stationary car. If one tire has a slow leak, the air pressure within the tire will decrease with time, the surface area between the tire and the road will increase with time, and the net force the tire exerts on the road will be constant with time.
Explanation:
when a wheel has an air leak, it means that the inside of the tire has less air, which means that there will be less air pushing the walls of the tire so that the air pressure decreases.
On the other hand, the tire begins to deform due to lack of air which increases the area of contact with the floor.
As the weight of the car remains constant and the air has a negligible mass the force towards the road will be the same