<span>v(4 seconds)= 300 m/s - 9.8 (m/s^2)(4s) = 260.8 m/s </span>, hope this helps:)
Answer:
lowest frequency = 535.93 Hz
distance between adjacent anti nodes is 4.25 cm
Explanation:
given data
length L = 32 cm = 0.32 m
to find out
frequency and distance between adjacent anti nodes
solution
we consider here speed of sound through air at room temperature 20 degree is approximately v = 343 m/s
so
lowest frequency will be =
..............1
put here value in equation 1
lowest frequency will be =
lowest frequency = 535.93 Hz
and
we have given highest frequency f = 4000Hz
so
wavelength =
..............2
put here value
wavelength =
wavelength = 0.08575 m
so distance =
..............3
distance =
distance = 0.0425 m
so distance between adjacent anti nodes is 4.25 cm
Answer:
Accuracy measures how close results are to the true or known value. Precision, on the other hand, measures how close results are to one another.
![\underline {\huge \boxed{ \sf \color{skyblue}Answer : }}](https://tex.z-dn.net/?f=%20%5Cunderline%20%7B%5Chuge%20%5Cboxed%7B%20%5Csf%20%5Ccolor%7Bskyblue%7DAnswer%20%3A%20%20%7D%7D)
<u>Given :</u>
![\tt \large {\color{purple} ↬ } \: \: \: \: \: I_{D} = 5mA](https://tex.z-dn.net/?f=%20%5Ctt%20%5Clarge%20%7B%5Ccolor%7Bpurple%7D%20%20%20%20%20%E2%86%AC%20%7D%20%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%20I_%7BD%7D%20%3D%205mA)
![\: \:](https://tex.z-dn.net/?f=%20%5C%3A%20%20%5C%3A%20)
![\tt \large {\color{purple} ↬ } \: \: \: \: \: I_{DSS} = 10mA](https://tex.z-dn.net/?f=%20%5Ctt%20%5Clarge%20%7B%5Ccolor%7Bpurple%7D%20%20%20%20%20%E2%86%AC%20%7D%20%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%20I_%7BDSS%7D%20%3D%2010mA)
![\: \:](https://tex.z-dn.net/?f=%20%5C%3A%20%20%5C%3A%20)
![\tt \large {\color{purple} ↬ } \: \: \: \: \: V_{GS(off)} = -6V](https://tex.z-dn.net/?f=%20%5Ctt%20%5Clarge%20%7B%5Ccolor%7Bpurple%7D%20%20%20%20%20%E2%86%AC%20%7D%20%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%20V_%7BGS%28off%29%7D%20%3D%20-6V)
![\: \:](https://tex.z-dn.net/?f=%20%5C%3A%20%20%5C%3A%20)
![\tt \large {\color{purple} ↬ } \: \: \: \: \: V_{GS} = {?}](https://tex.z-dn.net/?f=%20%5Ctt%20%5Clarge%20%7B%5Ccolor%7Bpurple%7D%20%20%20%20%20%E2%86%AC%20%7D%20%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%20V_%7BGS%7D%20%3D%20%20%20%7B%3F%7D)
![\: \: \:](https://tex.z-dn.net/?f=%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20)
<u>Let's Slove :</u><u> </u>
![\: \: \:](https://tex.z-dn.net/?f=%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20)
![\: \: \:](https://tex.z-dn.net/?f=%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20)
![\: \:](https://tex.z-dn.net/?f=%20%5C%3A%20%20%5C%3A%20)
(a) 328.6 kg m/s
The linear impulse experienced by the passenger in the car is equal to the change in momentum of the passenger:
![I=\Delta p = m\Delta v](https://tex.z-dn.net/?f=I%3D%5CDelta%20p%20%3D%20m%5CDelta%20v)
where
m = 62.0 kg is the mass of the passenger
is the change in velocity of the car (and the passenger), which is
![\Delta v = 5.30 m/s - 0 = 5.30 m/s](https://tex.z-dn.net/?f=%5CDelta%20v%20%3D%205.30%20m%2Fs%20-%200%20%3D%205.30%20m%2Fs)
So, the linear impulse experienced by the passenger is
![I=(62.0 kg)(5.30 m/s)=328.6 kg m/s](https://tex.z-dn.net/?f=I%3D%2862.0%20kg%29%285.30%20m%2Fs%29%3D328.6%20kg%20m%2Fs)
(b) 404.7 N
The linear impulse experienced by the passenger is also equal to the product between the average force and the time interval:
![I=F \Delta t](https://tex.z-dn.net/?f=I%3DF%20%5CDelta%20t)
where in this case
is the linear impulse
is the time during which the force is applied
Solving the equation for F, we find the magnitude of the average force experienced by the passenger:
![F=\frac{I}{\Delta t}=\frac{328.6 kg m/s}{0.812 s}=404.7 N](https://tex.z-dn.net/?f=F%3D%5Cfrac%7BI%7D%7B%5CDelta%20t%7D%3D%5Cfrac%7B328.6%20kg%20m%2Fs%7D%7B0.812%20s%7D%3D404.7%20N)