Answer: If the forces on an object are balanced, the net force is zero. If the forces are unbalanced forces, the effects don't cancel each other. Any time the forces acting on an object are unbalanced, the net force is not zero, and the motion of the object changes.
To prevent the crate from slipping, the maximum force that the belt can exert on the crate must be equal to the static friction force.
Ff = 0.5 * 16 * 9.8 = 78.4 N
a = 4.9 m/s^2
If acceleration of the belt exceeds the value determined in the previous question, what is the acceleration of the crate?
In this situation, the kinetic friction force is causing the crate to decelerate. So the net force on the crate is 78.4 N minus the kinetic friction force.
Ff = 0.28 * 16 * 9.8 = 43.904 N
Net force = 78.4 – 43.904 = 34.496 N
To determine the acceleration, divide by the mass of the crate.
a = 34.496 ÷ 16 = 2.156 m/s^2
Answer:
F = 4399 KN
Explanation:
given,
mass of automobile = 890 kg
initial speed = 48 km/h
= 48 × 0.278 = 13.34 m/s
using equation of motion
v² = u² + 2 a × s
0 = 13.34² - 2 a ×0.018

a = 4943.21 m/s²
F = m × a
F = 890 × 4943.21
F = 4399456.9 N
F = 4399 KN
hence, the Net force is F = 4399 KN
Explanation:
It is given that,
Length of wire, l = 0.53 m
Current, I = 0.2 A
(1.) Approximate formula:
We need to find the magnitude of the magnetic field made by the current at a location 2.0 cm from the wire, r = 2 cm = 0.02 m
The formula for magnetic field at some distance from the wire is given by :


B = 0.000002 T

(2) Exact formula:


B = 0.00000199 T
or
B = 0.000002 T
Hence, this is the required solution.
Answer:
Explanation:
Chemical to thermal as fuel is burned
Thermal to kinetic as the hot gasses push on pistons