1) 29.4 N
The force of gravity between two objects is given by:

where
G is the gravitational constant
M and m are the masses of the two objects
r is the separation between the centres of mass of the two objects
In this problem, we have
(mass of the Earth)
(mass of the box)
(Earth's radius, which is also the distance between the centres of mass of the two objects, since the box is located at Earth's surface)
Substituting into the equation, we find F:

2) 
Let's now calculate the ratio F/m. We have:
F = 29.4 N
m = 3.0 kg
Subsituting, we find

This is called acceleration of gravity, and it is the acceleration at which every object falls near the Earth's surface. It is indicated with the symbol
.
We can prove that this is the acceleration of the object: in fact, according to Newton's second law,

where a is the acceleration of the object. Re-arranging,

which is exactly equal to the quantity we have calculated above.
Answer:

Explanation:
Given,
Width of rectangular tank, b = 1 m
Length of the tank, l = 2 m
height of the tank, d = 1.5 m
Depth of gasoline on the tank, h = 1 m


The differential form with the acceleration


acceleration in z-direction = 0 m/s²
g = 9.8 m/s²
a_y is the horizontal acceleration of the gasoline.



Hence, Horizontal acceleration of the gasoline before gasoline would spill is equal to 4.9 m/s²
The dens or the odontoid process of the axis or the second cervical spine forms a pivot point with the atlas or the first cervical vertebrae that is responsible for the nodding and the rotational movements of the head. This is reinforced by ligaments and the atlanto-occipital joint that allows the head to make a nodding or up and down movement on the vertebral column.
Answer:
(a) 
(b) 
Explanation:
mass, m = 2.3 kg
vx = 40 m/s
vy = 75 m/s
(a) Angular momentum is given by

Where, p is the linear momentum and r is the position vector about which the angular momentum is calculated.
Here, 



So, the angular momentum


(b) Here, 



Answer:
Explanation:
We know that the pressure can be calculated in the following way:
p = d·g·h
with d being the density of the water, g the gravitational acceleration and h the depth.
Also d of the water = 1000 kg/m^3 circa and g = 9.8 m/s^2 circa
117,500 Pa = 1000kg/m³ · 9.8m/s² · h
Therefore h = 11,9 m