1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Natalija [7]
3 years ago
10

Which of the following is true about a rigid body in dynamic equilibrium? The body can have translational motion, but it cannot

have rotational motion. The body can have translational motion and rotational motion, as long as its translational and angular accelerations are equal to zero. The body cannot have translational motion, but it can have rotational motion. The body cannot have translational or rotational motion of any kind.
Physics
1 answer:
mr_godi [17]3 years ago
5 0

Answer:

The correct answer is "The rigid body can have rotational and transnational motion, as long as it's transnational and angular accelerations are equal to zero."

Explanation:

A rigid body by definition does not deform when forces act on it. In case of static equilibrium a rigid body cannot have any sort of motion while in case of dynamic equilibrium it can move but with constant velocities only thus having no acceleration weather transnational or angular.

You might be interested in
A nasa spacecraft measures the rate r of at which atmospheric pressure on mars decreases with altitude. the result at a certain
Lesechka [4]

Answer:4.21 \times 10^{-10} J/cm^4

1 kPa= 10^3 Pa

1 km=10^5 cm

1kPa/km=0.01 Pa/cm

1kPa/km=10^{-8} J/cm^4

\Rightarrow r= 0.0421 kPa/km= 0.0421 kPa/km \times \frac{10^{-8} J/cm^4}{1 kPa/km}= 0.0421 \times 10^{-8}J/cm^4=4.21 \times 10^{-10} J/cm^4

3 0
3 years ago
Read 2 more answers
What is the displacement current in the capacitor if the potential difference across the capacitor is increasing at 500,000V/s?
konstantin123 [22]

Answer:

I=2.71\times 10^{-5}\ A

Explanation:

A 6.0-cm-diameter parallel-plate capacitor has a 0.46 mm gap.  

What is the displacement current in the capacitor if the potential difference across the capacitor is increasing at 500,000V/s?

Let given is,

The diameter of a parallel plate capacitor is 6 cm or 0.06 m

Separation between plates, d = 0.046 mm

The potential difference across the capacitor is increasing at 500,000 V/s

We need to find the displacement current in the capacitor. Capacitance for parallel plate capacitor is given by :

C=\dfrac{A\epsilon_o}{d}\\\\C=\dfrac{\pi r^2\epsilon_o}{d}, r is radius

Let I is the displacement current. It is given by :

I=C\dfrac{dV}{dt}

Here, \dfrac{dV}{dt} is rate of increasing potential difference

So

I=\dfrac{\pi r^2\epsilon_o}{d}\times \dfrac{dV}{dt}\\\\I=\dfrac{\pi (0.03)^2\times 8.85\times 10^{-12}}{0.46\times 10^{-3}}\times 500000\\\\I=2.71\times 10^{-5}\ A

So, the value of displacement current is 2.71\times 10^{-5}\ A.

4 0
3 years ago
What benefits does preforming this investigation in the physical world have over the computer simulation?
mezya [45]

Explanation:

Can be safer and cheaper than the real world. Able to test a product or system works before building it. Can use it to find unexpected problems. Can speed things up or slow them down to see changes over long or short periods of time.

.

.

.

.

3 0
3 years ago
A sound wave leaves the loudspeaker. As it travels, it experiences a temporary increase in wavelength and then returns to its or
Brut [27]

A sound wave leaves the loudspeaker. As it travels, it experiences a temporary increase in wavelength and then returns to its original wavelength.  The sound wave traveled through a helium balloon (helium is less dense than air could explain this change in wavelength

The pattern of disruption brought on by energy moving away from the sound source is known as a sound wave. Longitudinal waves are what makeup sound. This indicates that the direction of energy wave propagation and particle vibrational propagation are parallel. The atoms oscillate when they are put into vibration.

A high-pressure and a low-pressure zone are created in the medium as a result of this constant back and forth action. Compressions and rarefactions, respectively, are terms used to describe these high- and low-pressure zones. The sound waves go from one medium to another as a result of these regions being transmitted to the surrounding media.

To learn more about sound waves please visit -
brainly.com/question/11797560
#SPJ1

4 0
2 years ago
(See picture) may I have help!!?
algol13
Picture is blurry…. try re uploading it
6 0
2 years ago
Other questions:
  • A horse pulls forward on a carriage with a given force. By Newton's Third Law, the carriage must be pulling on the horse backwar
    5·1 answer
  • A magnet can attract or repel another magnet from a distance true or false?
    15·2 answers
  • First sign of lung cancer
    6·2 answers
  • An electron is located on a pinpoint having a diameter of 3.52 µm. What is the minimum uncertainty in the speed of the electron?
    15·1 answer
  • A shotgun of mass 3kg fires a bullet of 0.1kg at a velocity of 250m/s. What is the recoil velocity of the gun
    5·1 answer
  • Answer right I will cashapp $5
    5·2 answers
  • Two polarizing sheets have their transmission axes crossed so that no light is transmitted. A third sheet is inserted so that it
    11·1 answer
  • A ball rolls off a table and it traveling with a horizontal velocity of 2 m/s and 1 point
    15·2 answers
  • Which statements represent properties of intermolecular forces? Select all that apply.
    13·1 answer
  • What time does the clock go back for daylight savings
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!