Answer:
Z = R, i = V/Z, w = √1 / LC
Explanation:
In an RLC circuit the impedance of the circuit is
Z = √[R² + (
)²
Where
= wL
X_{L} = 1 / wC
They are the reactances of the inductor and the capacitor, in this case the current advances to the voltage in the first and is delayed from the voltage in the second, so when the two values give the same reactance the current goes in phase with the voltage and the impedance is minimal
Z = R
V= i Z
i = V/Z
Therefore the current is maximum, this occurs when
w = √1 / LC
Saying that this is the resonant frequency
I would say B. hope it helps
Answer:
Publishing results of research projects in peer-reviewed journals enables the scientific and medical community to evaluate the findings themselves. It also provides instructions so that other researchers can repeat the experiment or build on it to verify and confirm the results.
Explanation:
It is given that,
The horizontal and vertical component of velocity of an electron is:

The magnetic field acting there is given by :

(a) The magnitude of the magnetic force on the electron is given by :

q = e




(b) We know that the charge on proton is :

The magnetic force as same as for electron but the direction is opposite i.e.

Hence, this is the required solution.
Answer: The ice absorb 6671.1 kJ of thermal energy.
Explanation:
The conversions involved in this process are :


Now we have to calculate the enthalpy change.

where,
= enthalpy change = ?
m = mass of ice = 20.0 kg =
(1kg=1000g)
n = number of moles of ice= 
= enthalpy change for fusion = 6.01 KJ/mole = 6010 J/mole
Now put all the given values in the above expression, we get

(1 kJ = 1000 J)
Therefore, the enthalpy change is, 6671.1 kJ