Answer:
0.6983 m/s
Explanation:
k = spring constant of the spring = 0.4 N/m
L₀ = Initial length = 11 cm = 0.11 m
L = Final length = 27 cm = 0.27 m
x = stretch in the spring = L - L₀ = 0.27 - 0.11 = 0.16 m
m = mass of the mass attached = 0.021 kg
v = speed of the mass
Using conservation of energy
Kinetic energy of mass = Spring potential energy
(0.5) m v² = (0.5) k x²
m v² = k x²
(0.021) v² = (0.4) (0.16)²
v = 0.6983 m/s
Answer:
There may be excess charges in the interior of the wire
The net electric field everywhere inside the wire is zero
The interior of the metal wire is neutral.
There may be excess charges on the surface of the wire.
There is no net flow of mobile electrons inside the wire.
Explanation:
For any metal wire in equilibrium position, there may be excess charges in the interior of the wire and the net electric field everywhere inside the wire is zero. Additionally, the interior of the metal wire is always neutral and there is likely to be excess charges on the surface of the wire. Moreover, it's important to note that for a metal wire in equilibrium, there is no net flow of mobile electrons inside the wire.
<span>when you say a=4.02 i am going to acceleration in m/s^2.
If the acceleration is 4.02 then you take the integral to find the speed.
speed=4.02 t where t is time in seconds.
[4.02(0)+4.02(3.11)]/2=6.2511
[4.02(3.11)+4.02(6.22)]/2=18.7533</span>
Https://answers.yahoo.com/question/index?qid=20120227184717AAzEq8g