Answer:
(a) 0.17 m
(b) 5.003 m
(c) 6.38 ×
N
(d) 7.37 ×
N
Explanation:
(a) The minimum value of
will occur when q3 = 0 m or at origin and q1, q2 are at 0.17 m so the distance between q3 and q1, q2 is 0.17 m, therefore the <em>minimum value of x= 0.17 m</em>.
(b) The maximum value of x will occur when q3 = 5 m because it is said in the question that 5 is the maximum distance travelled by q3. To find the hypotenuse i.e. the distance between q3 and q1,q2, we use Pythagoras theorem.

<em>Hence, the maximum distance is 5.002 m</em>
(c) For minimum magnitude we use the minimum distance calculated in (a)
Minimum Distance = 0.17 m
For electrostatic force= 

×
(d) For maximum magnitude, we use the maximum distance calculated in (b)
Maximum Distance = 5.002 m
Using the formula for electrostatic force again:
F = 
F= 7.37×
N
Explanation:
Newton’s First Law of Motion - if an object is at rest, it takes un-
balanced forces to make it move. Conversely, if an object is moving
it takes an unbalanced force to make it change it’s direction or speed.
Newton was the first to see that such apparently diverse phenomena as a satellite moving near the Earth's surface and the planets orbiting the Sun operate by the same principle: Force equals mass multiplied by acceleration, or F=ma.
Mark me as brainlist
Answer:
f = 1.18 x 10¹¹ Hz
Explanation:
The equation used to find frequency is:
f = c / w
In this form, "f" represents the frequency (Hz), "c" represents the speed of light (3.0 x 10⁸ m/s), and "w" represents the wavelength (m).
Since you have been given the value of the constant (c) and wavelength, you can substitute these values into the equation to find frequency.
f = c / w <---- Formula
f = (3.0 x 10⁸ m/s) / w <---- Plug 3.0 x 10⁸ in "c"
f = (3.0 x 10⁸ m/s) / (2.55 x 10⁻³ m) <---- Plug 2.55 x 10⁻³ in "w"
f = 1.18 x 10¹¹ Hz <---- Divide
Answer:

Explanation:
v = Velocidad final = 
u = Velocidad inicial = 0
t = Tiempo empleado = 15 s
a = Aceleración
De las ecuaciones cinemáticas tenemos

La aceleración del camión en el primer intervalo de tiempo es
.
Answer:
47.8 °C
Explanation:
Use the heat equation:
q = mCΔT
where q is the heat absorbed/lost,
m is the mass of water,
C is the specific heat capacity,
and ΔT is the change in temperature.
Here, q = 100 kJ, m = 0.5 kg, and C = 4.184 kJ/kg/°C.
100 kJ = (0.5 kg) (4.184 kJ/kg/°C) ΔT
ΔT = 47.8 °C