The practical examples i would suggest are:
Try pouring palm oil into a container when thick and when heated, when heated the viscosity is higher than when cooled
Try starting your car in winter and summer, during the winter the viscosity of the engine oil is very high making it difficult for the car to start but reverse is the case during summer
Answer:
The mean free path of argon molecules becomes comparable to the diameter of this container at a pressure of 0.195 Pa
Explanation:
<u>Step 1</u>: Calculate the volume of a spherical container V
V = (4π*r³)/3
r = (3V/4π)^1/3
2r = d = 2*(3V/4π)^1/3
with r= radius
with d= diameter
The diameter is:
d= 2*(3V/4π)^1/3
d= 2*(3*100cm³/4π)^1/3
d= 5.76 cm
<u>Step2 </u>: Define the free path lambda λ of argon
with λ =k*T/ σp
with p = kT/σλ
with T= temperature = 20°C = 293.15 Kelvin
with k = Boltzmann's constant = 1.381 * 10^-23 J/K
with p = the atmospheric pressure
with σ = 0.36 nm²
p = kT/σλ
p = (1.38 * 10^-23 J*K^-1 * 1Pa *m³/1J)*(293,15K) /(0.36 nm²*(10^-9/ 1nm)² *(5.76cm* 10^-2m/1cm)
p = 0.195 Pa
The mean free path of argon molecules becomes comparable to the diameter of this container at a pressure of 0.195 Pa
i think it's the last answer!
MgS2o3 weights (24.305) + 3(16) grams pre mole so if you divide 181 g by that number you will have the number of moles. Grams*(moles/grams)=moles