First of all, that's not an equation. An equation needs an 'equals' sign ( = ),
so you need something like
Amount present = a e^-0.0025t .
'a' = amount present when t = 0 .
The half-life is the time it takes for the original amount to decay to half of it.
That's just 't' when e^-0.0025t = 1/2
Take the natural log of each side: -0.0025t = ln(0.5)
Divide each side by -0.0025 : t = ln(0.5) / (-0.0025) =
(-0.69315) / (-0.0025) =
<em>t = 277.26 minutes</em>
( 4hrs 37min 15.5sec)
Rounded to nearest tenth: t = 277.3 minutes .
<h2>The gravitational potential energy is double for stone with twice the mass of other stone.</h2>
Explanation:
Let mass of stone 1 be m.
Mass of stone 2 is twice the mass of stone 1.
Mass of stone 2 = 2m
We know that
Gravitational potential energy = Mass x acceleration due to gravity x Height
PE = mgh
For stone 1 ,
PE₁ = mgh
For stone 2 ,
PE₂ = 2mgh = 2 PE₁
So the gravitational potential energy is double for stone with twice the mass of other stone.
Answer:
a
Explanation:
a is he answers . mass and density
Given that,
A ball is thrown upward. At a height of 10 meters above the ground, the ball has a potential energy of 50 Joules. It is moving upward with a kinetic energy of 50 Joules.
We need to find the maximum height h reached by the ball. Let at a height of 10 meters, it has a potential energy of 50 Joules. So,
........(1)
Let at a height of h m, it reaches to a maximum height. at this point, it has a total of 100 J of energy. So,

So, the correct option is (E) "h = 20 m".
The point where m3 experiences a zero net gravitational force due to M1 and m2 is 57.42 m.
<h3>
Position of the third mass</h3>
m1<------(x)------> m3 <-----------(94.8 m - x)-------->m2
a point, x, where m3 experiences a zero net gravitational force due to M1 and m2;
Force on m3 due to m1 = Force on m3 due to m2
Gm1m3/d² = Gm2m3/r²
m1/d² = m2/r²
where;
- d is the distance between m1 and m3 = x
- r is the distance between m3 and m2 = 94.8 - x
m1/(x²) = m2/(94.8 - x)²
m1(94.8 - x)² = m2x²
(94.8 - x)² = (m2/m1)x²
(94.8 - x)² = (10.6/25)x²
(94.8 - x)² = 0.424x²
(94.8 - x)² = (0.651)²x²
94.8 - x = 0.651x
94.8 = 1.651x
x = 94.8/1.651
x = 57.42 m
Thus, the point where m3 experiences a zero net gravitational force due to M1 and m2 is 57.42 m.
Learn more about gravitational force here: brainly.com/question/72250
#SPJ1