1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jek_recluse [69]
3 years ago
5

Use at least two to three completed content related sentences to explain why physics is considered the basic science. Provide at

least one example to explain how physics relates to other sciences
Physics
2 answers:
Virty [35]3 years ago
6 0
Idk your answer sorry
Lyrx [107]3 years ago
4 0
It is considered the basic science because other sciences depend on it to develop .For example , studying the space and the motion of planets need physics and we can't go sometimes to the space and do our experiment , also it uses in X-ray which consists of electromagnetic waves .
physics is needed in more sciences like chemisrty , geology ect..
You might be interested in
The lithosphere contains rocks, soils, and minerals.
sergij07 [2.7K]

Answer: TRUE

Explanation:

Hope this helped :))

4 0
3 years ago
Read 2 more answers
The de Broglie wavelength of an electron traveling at 7.0 x 107m/s is 1.0 x 10-11m. (Remember that me = 9.1 x 10-31kg and h = 6.
ivolga24 [154]

The De Broglie's wavelength of a particle is given by:

\lambda=\frac{h}{p}

where

h=6.6 \cdot 10^{-34} Js is the Planck constant

p is the momentum of the particle


In this problem, the momentum of the electron is equal to the product between its mass and its speed:

p=m_e v=(9.1 \cdot 10^{-31} kg)(7.0 \cdot 10^7 m/s)=6.4 \cdot 10^{-23} kg m/s

and if we substitute this into the previous equation, we find the De Broglie wavelength of the electron:

\lambda=\frac{h}{p}=\frac{6.6 \cdot 10^{-34} Js}{6.4 \cdot 10^{-23} kg m/s}=1.0 \cdot 10^{-11} m


So, the answer is True.

7 0
3 years ago
According to the what the universe's total amount of energy does not change
RideAnS [48]
The Law of Conservation of Energy
8 0
3 years ago
Questions
astra-53 [7]

Answer:

1968

Explanation:

2400*20.5*0.004

8 0
3 years ago
Usain Bolt's world-record 100 m sprint on August 16, 2009, has been analyzed in detail. At the start of the race, the 94.0 kg Bo
ZanzabumX [31]

a) 893 N

b) 8.5 m/s

c) 3816 W

d) 69780 J

e) 8030 W

Explanation:

a)

The net force acting on Bolt during the acceleration phase can be written using Newton's second law of motion:

F_{net}=ma

where

m is Bolt's mass

a is the acceleration

In the first 0.890 s of motion, we have

m = 94.0 kg (Bolt's mass)

a=9.50 m/s^2 (acceleration)

So, the net force is

F_{net}=(94.0)(9.50)=893 N

And according to Newton's third law of motion, this force is equivalent to the force exerted by Bolt on the ground (because they form an action-reaction pair).

b)

Since Bolt's motion is a uniformly accelerated motion, we can find his final speed by using the following suvat equation:

v=u+at

where

v is the  final speed

u is the initial speed

a is the acceleration

t is the time

In the first phase of Bolt's race we have:

u = 0 m/s (he starts from rest)

a=9.50 m/s^2 (acceleration)

t = 0.890 s (duration of the first phase)

Solving for v,

v=0+(9.50)(0.890)=8.5 m/s

c)

First of all, we can calculate the work done by Bolt to accelerate to a speed of

v = 8.5 m/s

According to the work-energy theorem, the work done is equal to the change in kinetic energy, so

W=K_f - K_i = \frac{1}{2}mv^2-0

where

m = 94.0 kg is Bolt's mass

v = 8.5 m/s is Bolt's final speed after the first phase

K_i = 0 J is the initial kinetic energy

So the work done is

W=\frac{1}{2}(94.0)(8.5)^2=3396 J

The power expended is given by

P=\frac{W}{t}

where

t = 0.890 s is the time elapsed

Substituting,

P=\frac{3396}{0.890}=3816 W

d)

First of all, we need to find what is the average force exerted by Bolt during the remaining 8.69 s of motion.

In the first 0.890 s, the force exerted was

F_1=893 N

We know that the average force for the whole race is

F_{avg}=820 N

Which can be rewritten as

F_{avg}=\frac{0.890 F_1 + 8.69 F_2}{0.890+8.69}

And solving for F_2, we find the average force exerted by Bolt on the ground during the second phase:

F_{avg}=\frac{0.890 F_1 + 8.69 F_2}{0.890+8.69}\\F_2=\frac{(0.890+8.69)F_{avg}-0.890F_1}{8.69}=812.5 N

The net force exerted by Bolt during the second phase can be written as

F_{net}=F_2-D (1)

where D is the air drag.

The net force can also be rewritten as

F_{net}=ma

where

a=\frac{v-u}{t} is the acceleration in the second phase, with

u = 8.5 m/s is the initial speed

v = 12.4 m/s is the final speed

t = 8.69 t is the time elapsed

Substituting,

a=\frac{12.4-8.5}{8.69}=0.45 m/s^2

So we can now find the average drag force from (1):

D=F_2-F_{net}=F_2-ma=812.5 - (94.0)(0.45)=770.2 N

So the increase in Bolt's internal energy is just equal to the work done by the drag force, so:

\Delta E=W=Ds

where

d is Bolt's displacement in the second part, which can be found by using suvat equation:

s=\frac{v^2-u^2}{2a}=\frac{12.4^2-8.5^2}{2(0.45)}=90.6 m

And so,

\Delta E=Ds=(770.2)(90.6)=69780 J

e)

The power that Bolt must expend just to voercome the drag force is given by

P=\frac{\Delta E}{t}

where

\Delta E is the increase in internal energy due to the air drag

t is the time elapsed

Here we have:

\Delta E=69780 J

t = 8.69 s is the time elapsed

Substituting,

P=\frac{69780}{8.69}=8030 W

And we see that it is about twice larger than the power calculated in part c.

3 0
3 years ago
Other questions:
  • Burl the painter weighs 600 Newtons. He stands in the exact middle of his stage. There are two scale readings attached to the tw
    5·1 answer
  • How can the speed of solvent molecules be slowed down?
    10·1 answer
  • In a classroom demonstration, the pressure inside a soft drink can is suddenly reduced to essentially zero. You may want to revi
    14·1 answer
  • How much heat is needed to raise the temperature of 100.0 g of water by 50.0°C? (Water’s specific heat is 4.18 J/g•°C)
    12·1 answer
  • How much energy is required to remove a proton from 157N? The masses of the atoms 157N, 146C and 11H are 15.000109 u, 14.003242
    6·1 answer
  • a dog runs after the car, the car is travelling at an average speed of 5 m/s, the dog runs 20 m in 5s. does she catch the car
    12·1 answer
  • In the cytoplasm, what is broken down into smaller molecules, releasing a small amount of what
    7·1 answer
  • Look at photo D. Explain how the fountains help to keep the gardens cool. ​
    13·1 answer
  • The 1kg rock is tied to a string and swung in a circular path as shown. The 1 meter string is tied to a post, and during the mot
    8·1 answer
  • Use the following formula to answer the following statement. Round to the nearest tenth.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!