-- If the object is moving with speed of 10.954 meters per second, then
it has 300J of kinetic energy no matter where it may be located.
-- If the object is 6.118 meters above somewhere, then it has 300J of
gravitational potential energy relative to that place.
<span>vf^2 = vi^2 + 2*a*d
---
vf = velocity final
vi = velocity initial
a = acceleration
d = distance
---
since the airplane is decelerating to zero, vf = 0
---
0 = 55*55 + 2*(-2.5)*d
d = (-55*55)/(2*(-2.5))
d = 605 meters
</span>
Answer:
volume is the correct answer
Explanation:
Answer:
the average force 11226 N
Explanation:
Let's analyze the problem we are asked for the average force, during the crash, we can find this from the impulse-momentum equation, but this equation needs the speeds and times of the crash that we could look for by kinematics.
Let's start looking for the stack speeds, it has a free fall, from rest (Vo=0)
Vf² = Vo² - 2gY
Vf² = 0 - 2 9.8 7.69 = 150.7
Vf = 12.3 m / s
This is the speed that the battery likes when it touches the beam. They also give us the distance it travels before stopping, let's calculate the time
Vf = Vo - g t
0 = Vo - g t
t = Vo / g
t = 12.3 / 9.8
t = 1.26 s
This is the time to stop
Now let's use the equation that relates the impulse to the amount of movement
I = Δp
F t = pf-po
The amount of final movement is zero because the system stops
F = - po / t
F = - mv / t
F = - 1150 12.3 / 1.26
F = -11226 N
This is the average force exerted by the stack on the vean